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Abstract
Multi-core processors have become ubiquitous in modern hardware. However, efficiently exploit-
ing the parallelism offered by these architectures still remains a challenge. Concurrency models
allow the programmer to structure his code in logically separated concurrent tasks. How the
different operations are structured into logically separated concurrent tasks and how these differ-
ent tasks are synchronised heavily depends on the concurrency model that is used. Concurrency
models come in a wide array of flavours and each of them is well suited for expressing a particular
type of concurrency. The starting hypothesis of this thesis is that application developers can
benefit from combining different concurrency models to parallelise the different parts of their
application.

This thesis investigates the combination of two concurrency models, namely the actor model
and software transactional memory. Both models offer certain semantic guarantees that allow
programmers to write lock-free code. However, the former model does not allow shared mutable
state by design which is one of its strengths but limits expresiveness. This thesis investigates
whether it is possible to combine the actor model with software transactional memory into a
conglomerate model that still satisfies the semantic properties that both models guarantee when
used in isolation, and does not introduce additional liveness or safety issues.

We provide a unified list of semantic properties of both software transactional memory and
actor languages which will form the correctness criteria for our result. The violation of these
properties by the ad hoc combination is illustrated by means of several examples. For both
models a library is implemented in Clojure as an experimental platform.

We compose a novel formal semantics that show that the actor model can be safely combined
with software transactional memory while still ensuring the semantic properties that each model
guarantees if used in isolation. As a proof of concept we provide an implementation of the formal
semantics in Clojure under the name Actransors which is comprised of a modified version of the
two aforementioned libraries.

We validate our approach by translating an existing Clojure application into a version that
uses Actransors which results in an equivalent application with added expressivity. Finally we
informally prove that the semantic properties of both models remain intact.
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Samenvatting

Multikernprocessoren zijn alomtegenwoordig in moderne computersystemen. Het parallellisme
van deze machines efficiënt uitbuiten blijft echter een hele uitdaging. Een concurrency model is
een programmeermodel dat abstracties introduceert die de programmeur toelaten op een intu-
itieve manier gebruik te maken van het potienteel van multikernprocessoren.

Elk programmeermodel heeft echter zijn beperkingen. Om ten volle gebruik te kunnen maken
van een model is het essentieel om de zwaktes en sterktes ervan te kennen alsook de mogelijkheden
van het model.

Programmeermodellen laten de programmeur toe om zijn code in logisch gescheiden on-
afhankelijke taken te verdelen. Hoe de verschillende operaties gestructureerd worden in logisch
gescheiden taken en hoe deze taken gesynchroniseerd worden hangt af van het programmeermodel
dat toegepast wordt. Er is de dag van vandaag een brede waaier aan programmeermodellen
beschikbaar en elk van deze modellen is uitermate geschikt om een specifieke vorm van parallel
programmeren uit te drukken. Het uitgangspunt van deze thesis is dat ontwikkelaars er baat bij
hebben om niet een enkel programmeermodel toe te passen maar een combinatie van meerdere
programmeermodellen tegelijk in eenzelfde programma.

Dit proefschrift zal de combinatie van twee specifieke programmeermodellen onderzoeken,
namelijk het actor model en “Software Transactional Memory”. Beide modellen hebben aantrekke-
lijke eigenschappen die het interessante computationele modellen maken ommultikernprocessoren
uit te buiten. Beide modellen laten de programmeur ook toe om “lock-free” programma’s te schri-
jven. Het ontwerp van het actor model staat echter niet toe om geheugen te delen tussen actoren.
Dit is een van de sterktes van het model maar dit beperkt ook de uitdrukkingskracht van het
model. Dit proefschrift zal onderzoeken of het mogelijk is om een combinatie te maken van
het actor model en “Software Transactional Memory” die nog steeds de semantische eigenschap-
pen van beide modellen garandeert en geen nieuwe problemen introduceert die de correctheid
schaden.

Dit proefschrift verzamelt een lijst van semantische eigenschappen gebaseerd op bestaande
literatuur. Dez die een verzameling is van semantische eigenschappen van elk van beide model-
lene lijst zal als basis dienen om ons voorgesteld model te staven.We tonen via enkele voorbeelden
aan dat een triviale combinatie tot problemen leidt. Om te experimenteren voorzien we een im-
plementatie van beide modellen in Clojure, een programmeertaal voor de Java virtuele machine.

We geven een formele semantiek die weldegelijk aantoont dat een combinatie van beide mod-
ellen mogelijk is. De semantiek garandeert de beoogde semantische eigenschappen. Als proof
of concept stellen we een implementatie voor van onze formele semantieken in Clojure onder de
naam “Actransors”. Deze bibliotheek voor Clojure is een aangepaste versie van de voorgenoemde
libraries.

Om onze bevindingen te valideren hebben we een bestaande applicatie vertaald zodat deze
gebruik maakt van Actransors. Het resultaat is een equivalente applicatie die expressiever is.
Als laatste tonen we aan dat de vooropgestelde semantische eigenschappen van beide modellen
bewaard blijven.
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1
Introduction

Multi-core processors have become ubiquitous in modern hardware. However, efficiently exploit-
ing the parallelism offered by these architectures still remains challenging. Concurrency models
are models of computation that allow the programmer to abstract away of the notion of cores
and threads and write more intuitive code while still exploiting parallelism or concurrency.

Each concurrency model however has its limitations. To fully exploit the capabilities of a
concurrency model one has to understand its limitations as well as its capabilities.

Concurrency models allow the programmer to structure his code in logically separated con-
current tasks. How the different operations are structured into logically separated concurrent
tasks and how these different tasks are synchronised heavily depends on the concurrency model
that is used. Concurrency models come in a wide array of flavours and each of them is well suited
for expressing a particular type of concurrency. The starting hypothesis of this thesis is that
application developers can benefit from combining different concurrency models to parallelise
the different parts of their application. For example, futures are easy to use for forking off a
disk write. Atomic variables (e.g., AtomicInteger in java.util.concurrent.atomic) allow the
programmer to safely share a single variable across multiple threads and avoid race conditions
on that variable.

In a sequential program there is only one path of execution. A program is executed as a
single stream of operations. Concurrent programming allows the programmer to define multiple
streams of operations in which each of those streams executes as a single stream of operations.
When a computer executes these streams they are not all necessarily executed on an individual
unit of computation (processor core). Hence, individual execution steps can be interleaved. This
is the main source of nondeterminism in multi-core programming. Due to the interleaving of
execution streams race conditions can occur. Two or more threads modifying shared memory in
an uncoordinated fashion. The thread depends on a proper interleaving with other threads in
order for the entire program, i.e., all execution streams, to produce a correct result. When the
programmer writes code that manipulates or reads from shared memory no guarantees are made
about data coherence spanning multiple statements in a single execution stream. In general,
concurrent programs are nondeterministic and thus hard to reason about. Programmers can
introduce a synchronisation mechanism such as locks to prune that non-determinism. However,

7



CHAPTER 1. INTRODUCTION 8

these synchronisation mechanisms typically can lead to issues of their own such as deadlocks.
(Lee, 2006).

1.1 Combining Concurrency Models
Any given problem that requires concurrency control has a particular concurrency model that is
best suited to solve it and others that are less well suited. For example, if one wishes to share
an integer across threads as a counter an atomic variable would be well suited. Programmers
do not need to consider using explicit synchronisation when using the atomic variable since it
publishes an interface to increment, decrement, read and possibly compare and swap. If one is
writing a program using the actor model it is not unthinkable to use the atomic variable model
as well. This would be a combination of the actor model and atomic variables.

Suppose one is writing an email client. One could reason that the core of the application
should be modelled as a continuous thread and a seperate thread for the interface rendering. The
reason being that the latter thread should not be interrupted by other computations in order to
maintain a smooth user experience. To update the in-box of the client a lot of communication
with the mail server is required. Such communication could be done inside a future. When the
new data has arrived one might use a transaction to update existing items in the mailbox their
read status (read or unread). A background task that continuously checks for new emails could
be modelled as an actor that receives messages when a forced update is required. Other parts of
the program such as a calendar, a todo list, etc. could also be modelled by an actor. If one of
the widgets were to fail and crash the rest of the program would remain unaffected.

As we will show below, some concurrency models are better suited to express certain tasks
than the actor model. However, different concurrency models are not always integrated properly
with one another(Swalens, Marr, De Koster, & Van Cutsem, 2014).

Tasharofi, Dinges, and Johnson (2013) have studied a corpus of programs that are written in
the Scala language, an actor language for the JVM. The corpus of programs is selected out of all
the publicly available Scala and Akka programs on the public code repository website GitHub.
As Tasharofi et al. (2013) discovers, the actor model in its pure form (i.e., no shared memory
or other concurrency paradigms) does not really meet all the requirements programmers have of
a language or framework such as Scala or Akka. Hence, programmers tend to mix concurrency
models that are better suited for the task at hand. One of the reasons that this happens in Scala
for example, is the seamless interoperability with Java. It may be easier and more comfortable
to use another concurrency paradigm such as a future than to write an entire actor for a simple
job, especially when no extra effort is required for interoperability. In Clojure one can use futures
in combination with any other available concurrency model, however, they are an abstraction of
pure Java futures. This gives the guest language (Clojure) more control over the execution of
the future in the host language (Java) and allows the language or library designer to increase
composability.

Tasharofi et al. (2013) have shown that the main motivations for combining concurrency
models with the actor model can be divided into three categories. Shortcomings of the actor
libraries, shortcomings of the actor model or inadequate programmer experience. One of the
reasons amongst the first category are managing I/O actions efficiently. The programmers are
unsure about how well Scala handles big data transfers between actors as the actor model is
designed to transfer small messages by design. Note that enforcing messages to be send by value
(safe message passing) would require deep copies of big data. Hence, they chose to handle file
transfers using Runnables (java.lang library) to avoid blocking an actor thread too long that is
running on the actor thread pool.
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Ideally one would like to obtain the benefits of the actor model such as scalability and safety
but still be able to use other concurrency models as they wish without breaking the semantics
of the actor model or the model it is combined with.

In general, combining concurrency models with each other requires careful reasoning and
additional bookkeeping by the runtime. Given that each model has a set of semantic properties
that guarantee certain properties about the concurrency model does not mean that these prop-
erties still hold when one model is combined with another. Swalens et al. (2014) have studied
the concurrency models present in Clojure. Clojure has a lot of concurrency models built-in:
transactions, threads, CSP, channels, agents, futures, atomic variables, etc. Swalens et al. dis-
cuss the combination of each model and check if they fulfill the requirements of liveness and
safety(Lamport, 1977). Each combination of models is checked to see if it introduces additional
liveness or safety issues. That is, a model itself does not necessarily guarantee liveness or safety
but a combination does not preserve the guarentees made by each model in isolation. Liveness
is the criterion that a program, given a correct input, does not end up in a deadlock or livelock.
Safety on the other hand guarantees that a program, given a correct input produces a correct
output.

1.1.1 Problem Statement
The goal of this thesis is to investigate the properties of a combination of two concurrency mod-
els, namely the Actor Model and Software Transactional Memory. As a stand alone concurrency
model the Actor Model has a number of safety guarantees that can be beneficial for the appli-
cation developer. The actor model avoids any race conditions on memory values by disallowing
shared state. Furthermore, given that the model operates by means of message passing it is a
lock-free model. No explicit locking mechanisms have to be provided by the programmer. How-
ever, the downside is that it offers up expressiveness, especially concerning access to shared state
(See subsection 3.1.1). STM allows for threads to modify a set of variables by means of a trans-
action. This model is lock-free as well and as such avoids race conditions and deadlocks. These
properties make it an attractive model to model shared state in concurrent programs. For the
given reasons it can be beneficial to integrate STM with the Actor model as a way to represent
shared state.

However, an ad hoc integration of both concurrency models does not necessarily preserve the
properties of both individual models. The goal of this thesis is to design a conglomerate model
that combines both models in such a way that none of the properties of the individual models
are invalidated.

1.2 Contributions
• We provide a unified list of semantic properties for the actor model and STM based on
existing literature. Furthermore, existing literature does not agree on a single definition for
the semantic property serializability. Consequently we have based ourselves on an existing
formal model(Bernstein & Goodman, 1983) and have defined serializability and 1-Copy
serializabilty using this model based on the work of Papadimitriou (1979).

• We provide an informal proof by example that an ad hoc combination of the actor model
with software transactional memory invalidates semantic properties of both models by
pinpointing problem scenarios.

• We informally provide a solution to the problems that arise when combining the actor
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model and software transactional memory. The informal solution is formally described
using formal semantics.

• We provide an implementation in Clojure for both the actor model and software transac-
tional memory which provide a platform for experimentation.

• We provide an implementation in Clojure of our conglomerate model under the name
Actransors which is a proof of concept of our formal semantics.

1.3 Roadmap
Chapter 2 discusses the actor model and software transactional model in detail. The chapter
will introduce each model and discuss their semantic properties.

Chapter 3 discusses the inadequacies of the actor model and how shared state can be modelled
in a pure actor language. Furthermore we will also discuss the problems that arise when the
actor model is combined with transactional memory in an ad-hoc fashion.

Chapter 4 discusses the proposed solution at a higher level. It also serves as an introduction
to the formal semantics given in chapter 5.

Chapter 6 discusses the implementation of the formal semantics in Clojure. The chapter
focusses on where the semantic and the implementation diverge and explains certain shortcomings
of the implementation with respect to the formal semantic.

Chapter 7 introduces the evaluation of the implementation and the semantic. A small program
will be written using the provided actor library and will then be translated to use the software
transactional memory library as well.

Chapter 9 concludes this thesis and elaborates on future work.



2
Pre-Science

In this chapter we will discuss the actor model and software transactional memory in more
detail. We will discuss different actor models and how they came into existence. For software
transactional memory we will shortly discuss hardware transactional memory, the first definition
of software transactional memory followed by the implementation found in Clojure: Multi Version
Concurrency Control STM. We will also give a short overview of some of the most important
semantic properties of each model.

2.1 Actors
The Actor model is a computational model first formally introduced by Hewitt, Bishop, and
Steiger (1973) as an architecture for artificial intelligence. The main goal of Hewitt et al. was
to exploit the architectures that consisted of multiple processing units that each have local
memory and thus make it possible to achieve high parallelism. The first actual implementation
of the Actor model was by Smith and Hewitt (Smith & Hewitt, 1975) as well; the language
named PLASMA. Since the actor model has been invented it has reincarnated in a wide array of
variations. Some of the more popular languages include SALSA, Scala(Haller & Odersky, 2009),
E and Erlang. The aforementioned languages are all languages designed from the ground up.
There are also library languages. These are languages that are built atop of another language
(e.g., Java or C#) and can be used as a library.

An Actor is a unit of computation that works in isolation. It is an autonomous unit that
operates concurrently with other Actors and has its own state that is not accessible to other
Actors. The only means of communicating with an Actor or manipulating an Actor’s behavior
is by sending asynchronous messages to it. This means that the sender of the message will not
wait until the message has arrived. The messages will be inserted into the in-box of the receiving
actor.

Since all communication with Actors happens asynchronously, messages need to be buffered
at the receiver in order for the receiver to process them at his own pace. Each message will
be buffered until the receiving actor processes the message from his in-box. An Actor will

11
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continuously take messages from this in-box and execute behavior that is determined by the
Actor based on the incoming message.

To this day there are wide array of Actor-like implementations. We will discuss a few key
Actor models and discuss on which aspects each model differs from other implementations.

2.1.1 Agha Actors
Agha (1986) defined a variation on the Actor model which forms the foundation for most of the
Actor models in use today. The main goal of the thesis was to develop a computational model
that would allow the programmer to exploit massive parallelism with relative ease on distributed
systems. In the paper Agha shows two languages, SAL and Act. Both languages showcase a
minimal Actor language. An Actor system according to Agha is comprised of tasks and behaviors.
A task in the context of an Actor system is what drives computations. If a system contains no
tasks then the Actors in the system will not perform computations since an Actor only executes
computations based on a task. A task contains three elements:

• Tag A tag that is used to distinguish this task from all other tasks that might contain an
identical target and communication.

• Target The target is the mail address of the recipient Actor.

• Communication The communication is a payload. It contains values exposed by the
sending Actor to the receiving Actor.

The sending Actor can only send messages to existing mail addresses. An Actor has three
possible ways to know the existence of an address. It can either be included in the received
communication, it is the address of a newly created Actor or finally, the address was known
before.

The next important element in an Actor system is a behavior. An Actor’s behavior is a
function. Each time an Actor processes a communication it has to execute this behavior. Ac-
cording to Agha an Actor can be conceptually thought of as a computational agent that maps
communications onto a triple containing a finite set of communications (messages) sent to arbi-
trary Actors, a new behavior which will act on the next communication and a finite set of newly
created Actors. This means that each time an actor processes a message from its in-box it can
define a new behavior for the next communication, create zero or more new actors and send zero
or more messages to other actors.

The become construct allows an Actor to specify new behavior for subsequent messages. Many
Actors can have the same behavior. Each time an Actor accepts a message and processes it, a
new behavior has to be defined that will apply to the next communication. In this perspective,
an Actor is defined by its behavior. Defining new behavior in SAL means that a new Actor is
created or an existing actor is reused that will process the next message by calling become and
passing in a mail address as an argument. From that point on, each time the Actor receives a
message it will be forwarded to the Actor which was the subject of the call to become. In case
the Actor does not compute a new behavior after processing a communication the exact same
behavior is reused.
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1 def Factorial () [val , cust]
2 become Factorial () ||
3 if val = 0
4 then send [1] to cust
5 else let cont = new FactorialCont(val , cust)
6 in send [val - 1, cont] to self
7 end def
8

9 def FactorialCont(val , cust) [arg]
10 send [val * arg] to cust
11 end def
12

13 // Top level expression
14 let x = [recep] new Factorial ()
15 in send [5] to x

Listing 2.1: Implementation of factorial using the SAL actor language.

Listing 2.1 depicts an example of a factorial actor using the SAL language defined by Agha
(1986). The behavior of an actor is defined using the def construct. A new actor with this
behavior is then created by calling [recep] new Factorial() (line 14). The recep binding
indicates that the actor is able to receive messages from the entire system. If a message is sent
to the actor the body will be executed (line 2 through 6). In this particular case the actor will
execute two actions concurrently using the || construct. Since the factorial actor is stateless it
can process factorial messages concurrently and thus immediately becomes Factorial() again
to increase performance.

If the value is 0 the actor sends a message [1] to the cust continuation (line 4). If it is not,
the actor creates a new continuation with the current value and the previous continuation and
sends the decreased value and the continuation to itself (line 5-6).

2.1.2 Erlang Actors
A model that is based on the Agha(Agha, 1986) Actors is the Erlang Actor model introduced by
Armstrong (2007). The language itself was invented at Ericsson in 1986. Erlang is based on the
model introduced by Agha (1986) but has a few variations. For example, in the Agha model one
had to specify a new behavior after processing each message (recall become). In Erlang an Actor
is spawned by using the spawn keyword and passing it a function with optional parameters. The
given function will then be executed in a separate process, i.e., an Actor. In the body of this
function the process can execute arbitrary statements, spawn new Actors, send messages to other
Actors or call new functions. In Agha actors, each behavior counts as a new turn. This implies
that a new behavior marks the end of the message processing. In Erlang an Actor can do an
arbitrary number of executions before executing a receive block somewhere in the body which
marks the end of a turn. This means that an isolated step in Erlang is not bound by the end of
a function body but by the beginning of a receive block which can be placed anywhere. Thus,
in contrast with traditional Agha(Agha, 1986) actors, Erlang actors are processes that run from
beginning to end. Anywhere in the execution flow of that process the actor can execute a receive
block and process communication.
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Example Listing 2.2 shows an example of an Erlang program. The program creates an actor
that computes the sum of two numbers. Upon reception of two numbers in the form of a message
the actor will compute the sum of these numbers and print them to the screen.

The entry point of the application is the start() function (line 13-18). The body creates
a new Actor whose address is stored in the variable Sum_act (line 14). Next, two numbers are
sent to the in-box of the Actor (line 15-16), followed by a “go” message, which tells the Actor to
compute the sum (line 17).

The sum function waits until the executing process has a “go” message in its in-box. Until
then the Actor is idling. Upon reception of the “go” message the Actor receives a first number
using the receive_num function. This is an example of a nested receive. Even though the sum
Actor is in the process of handling a message, it can continue to process other messages; in this
case numbers. The receive_number function returns the received number to the caller. Next,
sum receives a second number to finally print the result on the screen, which is the end of the
processing of the go message. This example clearly shows that a single atomic turn of an actor
is the computation that is done between two receive statements. In between those statements
no other actor can intervene and manipulate the execution flow of the Sum_act actor.

1 receive_num () ->
2 receive {Sender , Number} ->
3 Number
4 end.
5

6 sum() ->
7 receive go ->
8 First = receive_num (),
9 Second = receive_num (),

10 io:format("Sum of numbers is ~p~n", [First + Second])
11 end.
12

13 start() ->
14 Sum_act = spawn(?MODULE , sum , []),
15 Sum_act ! {self , 1},
16 Sum_act ! {self , 2},
17 Sum_act ! go ,
18 nil.

Listing 2.2: Adding two numbers in Erlang

2.1.3 Semantic Properties
Agha (1986) defined two atomic properties of a pure actor language: atomicity and encapsu-
lation. We will discuss both of them together with three other semantic properties of actor
languages(Karmani, Shali, & Agha, 2009): location transparency, mobility and fairness. For
each of these properties we will discuss their importance and implications they have on the lan-
guage. It is to be noted that not all these properties hold for all Actor languages. The discussed
semantic properties are by no means an exhaustive list.

Encapsulation Encapsulation is a concept that is well known from object-oriented program-
ming. It allows restricting access to an objects inner state (fields) and functionality (implemen-
tation of methods). An encapsulated object its state can only be modified or manipulated by
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Figure 2.1: Persistent data structure with structural sharing

means of the interface it publishes to the outside, i.e., public methods and fields. Encapsulation
ensures integrity of the object’s internal state and disallows sharing state between objects that
is intended to be private. In context of Actor languages there are two important parts to ensure
encapsulation: state encapsulation and safe message passing.

• State Encapsulation ensures that an actor does not share state with any other actor.
This is one of the key aspects that facilitates modularity and mobility in Actor languages.
The only interface an Actor has to other Actors is the means of message passing. An Actor
can never manipulate the state of another Actor directly. If this would be the case the
Actor can no longer guarantee atomicity and consistency. There are languages that do not
adhere to this property (e.g., Kilim). In Kilim (an Actor language for the JVM) Actors
can have memory references to other Actors’ in-box (Karmani et al., 2009). This would
allow them to circumvent the sending mechanism and immediately modify the in-box of
an actor.

• Safe Message Passing guarantees that sending a message with a payload (attached
values) will send a copy of the value (send-by-value). One might reason that in a non-
distributed Actor language it would be safe to send a memory reference to a value instead
of making a deep copy (send-by-reference), however, this effectively allows another Actor
to break encapsulation and consequently the safe message passing semantics.

Atomicity Given the encapsulation property of Actors, a second important semantic property
follows: atomicity. Since the only interface to communicate with an Actor is message passing and
an Actor only processes one message at a time it is possible to reason about a message processing
as an atomic single step, also called the isolated turn principle. The isolated turn principle states
that while an actor is processing a single message it can execute many statements which can be
interleaved at will (De Koster, 2014). However, the effects of these statements, i.e., the altered
state of the actor, are not visible to the rest of the system until the next message is being
processed. This means that only a single message can influence the computation of an actor and
that during its computation other messages have no effect on the outcome. In other words, an
actors behavior is deterministic inside each atomic turn, provided that the programmer does not
introduce nondeterminism himself, e.g., by using I/O.

This property goes hand in hand with encapsulation. If one were to break encapsulation
and allow any Actor to manipulate the internal state of an actor the atomicity can no longer be
guaranteed. Even more so, if an Actor is allowed to process multiple messages concurrently, the
two messages can influence the internal state of the actor, effectively influencing the processing
of other concurrently processed messages. This would no longer make it possible to reason about
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the computations that take place given only the message and the initial state of the actor because
the result of the computation could depend on multiple messages, meaning atomicity no longer
holds. However, there have been variations on this semantic by allowing multiple actors to
read the same shared state of an actor by publishing it in a read-only fashion(De Koster, Marr,
D’Hondt, & Van Cutsem, 2013). De Koster et al. state that even though there are concurrent
reads, atomicity is still preserved.

Atomicity is an important property of a system, that aids reasoning about that system.
A system that is highly modular allows one to reason about the properties of each module
in isolation. Each module of such a system could thus be reasoned about in terms of its in-
and output without knowing the actual internal workings (black box principle). However, as
stated before, due to the inherent nondeterminism of concurrent computations the behavior of
any composition of such modules can not be guaranteed due to the interleaving of concurrent
computations of separate modules. Atomicity mitigates this problem by guaranteeing that the
execution of one operation (message processing) can not be interleaved in such a way that it
would break the semantics of each individual component.

Location Transparency In general location transparency is the concept of abstracting actual
addresses of resources to a more generic identifier. In the context of distributed Actor systems
this means that an Actor is possibly running on an other node over the network and can still
be addressed in the same way as an actor running within the same virtual machine or runtime.
In any Actor language an Actor has an address to send messages to. By applying location
transparency the programmer does not have to differentiate between remote or local Actors,
i.e., the programmer is oblivious to the actual location of an Actor. This allows the runtime
system (e.g., Erlang runtime) to move Actors from their physical location at runtime which
could improve scalability and load balancing. Furthermore, it allows the runtime to replace an
actor at runtime as well. This is known as mobility(Fuggetta, Picco, & Vigna, 1998).

Mobility Mobility is the ability of a current control state of a computation to be moved from
either a processor or computer. Fuggetta et al. (1998) differentiates between weak mobility and
strong mobility. The former is a classification for when it is only possible to move code with a
possible set of initialization data, e.g., current state of an actor. For example, moving an idle
actor with an empty in-box would imply that only the code of the actor needs to be moved along
with its state. Hence, an actor that is not in the middle of an execution. The latter is a bit more
complex. Strong mobility means that it is possible to move code along with its current execution
state. In most languages this implies the current state of execution (continuation) as well as
the current execution stack. (Lange, Oshima, Karjoth, & Kosaka, 1997) have created “Aglets”.
Aglets are mobile Java agents that facilitate strong mobility of Java programs. When an aglet
is moved from one computer to another its current state, its code, its data and execution state
are passed. Hence, aglets offer strong mobility.

In most Actor languages code mobility should come quite naturally. For example, Erlang
most certainly has weak code mobility. Moving an idle actor with an empty in-box is as simple
as spawning the function on another node and passing the values for the formal parameters
of that function. Considering the design of the actor model it should be intuitively clear that
mobility is quite natural to the Actor model. Most Actor languages enforce encapsulation which
makes it easy to move the entire actor to another location.

Fairness Fairness is the notion that an Actor can not be starved (i.e., delaying a message
delivery indefinitely). An actor that has a message sent to him but can not process it because
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the system is too busy spending resources computing is called a starving actor. The starving
actor does not get scheduled by the runtime and consequently can not execute any operation.

Listing 2.3 depicts a scenario where fair scheduling would be required to avoid starvation of
an actor. At the entry point of the application (line 11) an actor is spawned that will execute
the endless_loop function. This will keep sending messages to the executing actor, in effect
creating an infinite loop. Next, we spawn an actor that will print out every message it receives
to the standard output. Finally we send a message to the printer. In case of unfair scheduling
the printer would not be able to process its message because the endless_loop actor might not
yield control back to the runtime. However, in Erlang there is indeed fair scheduling and thus
the printer will print the message eventually.

1 printer () ->
2 receive {print , Message} ->
3 io:format("~p~n", [Message])
4 end.
5

6 endless_loop () ->
7 receive loop ->
8 self ! loop
9 end.

10

11 start() ->
12 Endless_Loop = spawn(?MODULE , endless_loop , []),
13 Printer = spawn(?MODULE , printer , []),
14 Printer ! {print , "Here’s a message!"},
15 nil.

Listing 2.3: Erlang program that might have a starving actor (printer) in case the runtime would
lack fair scheduling.

2.2 Transactional Memory
Transactional Memory is a concurrency paradigm that was introduced to help create highly
concurrent programs. The problem with concurrent programs is that the critical sections need
to be managed with care. If not done properly there can be deadlocks, race conditions or bad
interleavings(Lee, 2006).

Taking too much liberty with delimiting critical sections can decrease concurrency severely
because critical sections are executed sequentially per definition. Hence it is important to make
the critical sections as small as possible. However, if the critical sections are too small they might
introduce race conditions.

A technique to avoid deadlocks is to acquire the locks in the same order for each critical
section (Lea, 1996). For example, in Java one could acquire locks in increasing order based on
their hash.

Transactional Memory aims to avoid writing explicit locking mechanisms by optimistically
writing to shared state. Transactional memory uses the notion of transactions to delimit sections
of a program that read from and write to shared memory. Instead of pessimistically locking all
resources before modifying global memory transactions work in a separate copy of the global
memory and then try to commit these changes to global memory.
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Transaction A transaction is a finite list of read and write operations on shared memory
references. The entire dataset of a transaction is the set of written references and read references.
A transaction ends when all the operations have been applied. It may then either abort or
commit. Committing a transaction applies its changes in a single atomic step to global memory
and makes them visible to other threads atomically. If a transaction aborts due to a conflict
it will be executed again on a fresh snapshot of the current global memory and apply all the
operations again. There are different approaches to transactional memory, mainly hardware and
software implementations. We will now discuss Hardware Transactional briefly and then continue
with Software Transactional Memory.

2.2.1 Hardware Transactional Memory
The main idea behind Hardware Transactional Memory (HTM)(Herlihy & Moss, 1993) is to
change the cache coherence mechanism in a multi-core processor. A cache line is a part of global
memory that a CPU core reads into its own small local memory (cache), which is not shared
with other cores. This cache line can be in 4 different states (MESI-protocol). Other protocols
(e.g., MOESIE-protocol) allow for other states.

• Modified The cache line has been read by a single core, which has written new values to
that cache line, therefore invalidating the global memory. The updates are not present in
global memory yet and no other cores have read that same cache line.

• Exclusive A core has read the cache line but has not written any new values to the cache
line. No other core has read the cache line either.

• Shared Multiple cores have read the same cache line but no core has written values to the
cache line. Therefore the global memory is valid still. Any core can write to the cache line.
If any core writes a new value to the cache line it will become invalid for all cores.

• Invalid A cache line is invalid if it has been read by one or more cores. An arbitrary core
has written new values to the cache line. This invalidates the cache line for all cores that
have read it and invalidates global memory.

A cache coherence mechanism ensures that a cache line that is shared between processors is
always in a consistent state with respect to the cores that read it. If a core invalidates a cache
line, the cache coherence mechanism will invalidate it for the other cores as well. Consequently,
a core can only write a cache line back to global memory if it is in an exclusive or modified state.

HTM exploits the cache coherence mechanism by using the core’s local cache as a buffer for
memory writes in transactions. This allows a single core to execute a transaction (i.e., a series
of memory reads and writes) by copying the required data to cache and applying the operations
on the cache. If at the end of the transaction the cache lines that were subject to the operations
are in the modified (writes) or exclusive (reads) state, the core knows that no other core has
made modifications to cache lines that were read or written in a transaction. Consequently the
changes can be committed to global memory and the transaction has succeeded.

Note that this requires the cache for a single core to be big enough to fit all the cache lines
that hold the data of locations the transaction wants to write to. This limits the size of the
dataset a single transaction can operate on.

If a transaction fails, multiple approaches are possible. A transaction has failed when it wants
to commit changes to global memory but an other core has made changes to the same cache line
or has read a cache line the transaction has already modified, i.e., one or more cache lines that are
in a invalid state were target of the transaction. As a result the transaction will flush the cache
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and start the operation again under the assumption that the core that invalidated the cache lines
is now finished with the write operations and no other core might invalidate these cache lines
again. Note that there are plenty of approaches on how to handle a failing transaction. However,
they will not be discussed for HTM.

2.2.2 Software Transactional Memory
Introduction

Software Transactional Memory is a software implementation of Hardware Transactional Memory(Herlihy
& Moss, 1993). It was introduced by Shavit and Touitou (1995). The most important downsides
of HTM are that it requires specific hardware and limits transaction size. Semantically speaking
HTM is blocking as well. As we will see STM does not suffer from this problem.

A TM implementation is non-blocking if, when a transaction is repeatedly retrying due to
collisions, there is at least one transaction in the system that will commit after a finite number of
steps. This does not have to be that specific transaction. A transaction τ can fail multiple times
because it conflicts with another transaction τ ′. If after a finite number of steps τ ′ successfully
commits, eventually τ will commit as well. This is an important property to consider because
it implies that no two transactions will perpetually retry because they conflict with each other.
It could be the case that τ ′ had to retry n times as well because it conflicted with an arbitrary
transaction τ ′′. If a transactional system is not non-blocking the programmer could write pro-
grams that result in a live-lock. An STM implementation is wait-free if a transaction that has
retried an arbitrary number of times succeeds.

Transactional Variable In STM implementations transactional variables are typically a spe-
cial kind of variable. For example, in Clojure a transactional variable is any data structure
wrapped inside a ref and in Haskell a transactional variable is wrapped inside a TVar. As such
it is impossible to write to such a transactional variable without starting a transaction. Because
data structures are wrapped inside a transactional variable the runtime can attach metadata to
each transactional variable. For example, the runtime can store the transaction that has current
ownership of this variable.

Transaction The implementation by Shavit and Touitou (1995) covers static transactions. A
static transaction knows the dataset it operates on beforehand. A static transaction can be
thought of as a function that executes in a single atomic step. It takes a parameter (e.g., an
array) and applies a modification on this array inside a transaction.

A transaction can be represented as a data structure that holds specific information about
that transaction instance: its size, old values and version. Recall that each transaction works
on a dataset. Size will hold the length of the dataset. Old values will contain a copy of the
values in global memory. Finally, version will hold the iteration of the transaction. Each time a
transaction ends by either failing or succeeding this field will be incremented.

At the start of a transaction it will try to acquire the ownership of each reference in old
values. This is done by putting a reference to the transaction object in a global ownership vector
using a Store_Conditional operation. If the ownership contains no owner, the transaction can
put its reference in there. This vector holds an entry for each transactional variable. When
the transaction succeeded in acquiring ownership for all entries in the dataset the transaction is
marked as succeeded. The transaction will copy the current values from global memory to the old
values vector. On this vector it will apply the operations in the transaction and return the vector
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with the updated values. Finally the transaction copies these values back to global memory and
releases ownership of all references in order for other transactions to execute.

If the transaction τ fails to obtain ownership of a reference it will fail. After trying to acquire
the ownership τ knows which transaction owns the reference (e.g., τ ′). If τ ′ is not in the succeeded
state it means that it has not yet obtained all the ownerships for its transaction. Consequently, τ
will execute the transaction body of τ ′ as well. It can obtain the dataset from the ownership field
(which is a reference to the transaction object of τ ′). Running this transaction might increase
contention but it might also succeed faster than τ ′ itself.

Multi Version Concurrency Control

Multi-version Concurrency Control (MVCC) is a concurrency control mechanism that stems from
database systems(Bernstein & Goodman, 1981). In database systems there is also a notion of
transactions. Two applications can execute queries on the same table, which might introduce
conflicting changes. For example, one program updating the pay grade of a list of employees
and another program reading out the pay grade to calculate their paycheck. If updating a list
of records takes a long time it would infeasible to lock the entire table for this transaction (i.e.,
forcing sequential reads and writes). Bernstein and Goodman (1981) address this issue with
MVCC. We will explain MVCC in the context of STM. For an in-depth explanation of how we
implemented MVCC, see Chapter 6.

MVCC stores versions of each transactional variable to reduce conflicts. Each time a write
operation is applied on a transactional variable, that new value is stored as the latest version of
that transactional variable.

In a traditional implementation a transaction T1 will fail if it can no longer read a consistent
state of the entire system. This means that at a given point in time, one or more transactional
variables have become outdated (i.e., they have been written to by a transaction T2) since T1
started. As a result the transaction should abort and execute again with a consistent snapshot
of the system state.

Two running transactions T1 and T2 will run into a conflict if transaction T1 writes to variable
x and transaction T2 tries to read the value of x.

Using MVCC, any time a transaction writes a new value to a transactional variable the old
version will be stored as well. Doing so it is possible for a transaction to write new values to
a transactional variable while any other transaction that is running concurrently can still see a
consistent snapshot of the current state of the system by using older values. This concept lends
itself to true snapshot isolation (Fekete, Liarokapis, O’Neil, O’Neil, & Shasha, 2005), which
implies that no transaction can start with an inconsistent snapshot of the global system state or
commit and leave the system in an inconsistent state.

Snapshot isolation can be achieved by applying a total order on the start times of transactions.
Each time a new transaction starts (or retries) in an MVCC system it will increment a global
counter, called the global write point. This value will then be stored in each transactional variable
by the writing transaction when it is written to. This allows any transaction to read values from
any transactional variable before the transaction itself started. If any transactions have written
new values to this variable, the transaction simply reads an older version. This makes sure
that each transaction reads values that were present before the transaction started. However,
transactions can still commit newer values in the mean while.

If a transaction would try to update a transactional variable that has been written to since
it started however, the transaction still has to restart.

Such a system requires a lot more memory than a traditional STM system. However, the price
paid in memory space returns a possible speed improvement given there can be potentially less
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collisions and thus less transactions that have to execute over and over again. Clojure alleviates
this problem by only keeping a limited history for each transactional variable. If a transaction
can not read a value of a variable that was written before it started that transaction would have
to retry in order to have a consistent snapshot.

2.2.3 Semantic Properties
Transactional memory (Software or Hardware implementations) has a few semantic properties
that are used to reason about its correctness. We will discuss the most important ones in detail.

Formal Model To explain correctness criteria for transactional memory a few conventions
and concepts must be established. We will base ourselves on a simplified version of the formal
model introduced by Bernstein and Goodman (1983).

A transaction Ti reading from a transactional variable x is denoted as readi[x]. A write by
transaction Ti on x is denoted as writei[x]. If the transaction that performs either operation is
not relevant to the context read[x] will be used.

A transaction executed by a process has a log. A log Li holds the list of operations performed
on each transactional variable in the order the transaction Ti executed them. In such a log a
transaction can execute multiple operations in parallel. Any given log about a transaction defines
an allowed execution according to the transactional memory system. Intuitively, the transaction
logs are a representation of how the model has executed these transactions. Fig 2.2 is an example
of a transaction performed by Ti.

Li = write[x]→ read[x]→ read[y]

Figure 2.2: Example transaction log

Any log L representing an execution of a transaction has to respect the program order of
the transaction. The program order is defined as the order in which the transaction expressions
appear in the source text. Thus, if a transaction contains two expressions e1 and subsequently
e2, the log must preserve this order.

Furthermore, in any given transaction log, no transaction can read from a variable x if it has
never been written to by another transaction or itself.

A log Lt over a set of transactions T = {T1, ..., Tn} is the union of all the log entries for each
individual transaction. A log over one or more transactions introduces a partial order on the
operations. Intuitively this means that two transactions can execute a read or write operation
concurrently. In (Bernstein & Goodman, 1983) the author makes a distinction between logs
and their sequential notation. A log over a single transaction per definition only enforces a
partial order. This means that several operations can happen concurrently. However, for the
purpose of the given definitions below we can use the constraint that a log introduces a total
order and thus each operation happens strictly before or after another operation. Furthermore,
software transactional systems tend to execute a single transaction sequentially while (Bernstein
& Goodman, 1983) is in context of database systems and as such concurrent operations within
a single transaction are possible. However, a log over more than 1 transaction still introduces a
partial order.

Two logs for a given transaction are equivalent if for each read operation in both logs, the
operation yields the same result. Furthermore, the value that each read operation reads must
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be written by the same transaction. This is the read-x-from relation. If a transaction Ti writes
a value to x and Tj reads this value, then in any equivalent log Tj reads the value produced
by Ti. Finally, each transaction log must leave the system (i.e., the transaction variables that
were subject of the transactions) in the same state after execution. That is, each transactional
variable must have the same value.

Serializability

Serializability(Papadimitriou, 1979) is a criterion most commonly used to verify transactional
systems.

Suppose a transaction execution that is allowed by the transactional memory system. It
comprises of a set of k processes that each execute 0 or more transactions. The k processes are
the only processes running in the system and no new processes can start. If, given the set P,
of all the transactions that the k processes execute we can create a log T with a partial order
over these transactions. Recall that given the context of software transactions we enforce that a
single transaction log has a total order. In this log no operations can execute concurrently with
any other operation. If the log T is serializable the execution is trivially correct because it proves
that the execution is equivalent to a sequential execution. Hence, no issues due to concurrency
can arise.

A serializable log L is any sequential total ordered log over a set of operations that adheres
to four constraints:

(1) For each pair of transactions in T , Ti and Tj , every operation of Ti must precede Tj or
every operation of Tj must precede every operation of Ti.

(2) Each read operation in the log L must still yield the same result as it did in the concurrent
execution that was accepted by the transactional system.

(3) Each transactional variable must have the same value after executing the sequential log as
it had when the transactions were executed concurrently.

(4) Any sequence of transactions issued by a single process must be executed in that same
order in the serial log.

Thus, given any log over a set of transactions that has an equivalent serializable log, that
execution is said to be correct.

Listing 2.3: Two transactions that should respect the invariant that x and y are always equal.

1 ;; T1
2 ;; x and y initially 0
3 (dosync
4 (ref-set x (+ @x 1))
5 (ref-set y (+ @y 1)))

1 ;; T2
2 ;; x and y initially 0
3 (dosync
4 (ref-set x (- @x 1))
5 (ref-set y (- @y 1)))

Listing 2.3 represents two transactions that are safely accepted by the concurrency model of
Clojure. This means that it considers them a correct execution. To prove that the transaction
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log of these two transactions is serializable, it suffices to construct a serial log with a total order.
Such a log is given in Figure 2.4.

Assuming that the first transaction starts first, the Clojure STM runtime will force the
second transaction to retry if the second transaction is scheduled before the first one finishes.
Consequently, the second transaction will read the values written by the first transaction. Hence,
the serialized log shown in Figure 2.4 states the the execution is correct because it is equivalent
to the concurrent execution.

If the second transaction were to start first the same rules apply, except the first transaction
would read the values of the second transaction. The serialized log for this scenario is depicted
in Figure 2.5.

L = read[x] < write[x] < read[y] < write[y]︸ ︷︷ ︸
T1

< read[x] < write[x] < read[y] < write[y]︸ ︷︷ ︸
T2

Figure 2.4: Example transaction log

L = read[x] < write[x] < read[y] < write[y]︸ ︷︷ ︸
T2

< read[x] < write[x] < read[y] < write[y]︸ ︷︷ ︸
T1

Figure 2.5: Example transaction log

Clojure Serializability The STM system present in Clojure is based on multi version con-
currency control. This system keeps older values of transactional variables such that other
transactions can read these whilst they are being written to by other transactions. This makes
the STM system accept transactions that are per this definition not serializable. To prove this a
counter example is given.

Given the code in Figure 2.6 one would expect that given a correct serialization either y or
b would be 1, assuming that each variable in the listing is initialized to 0. A serial execution
would force T1 as either the first or last transaction. In which case it would either read x with
a value of 0 or 1 respectively. The serialized log of the intuitively expected execution is shown
in Figure 2.7. However, this execution does not match the actual execution. What actually can
happen is that both transactions read a value for a and x that was the newest value when both
transactions started, both being 0. After these two transactions execute concurrently the final
value of the variables is shown in Table 2.1. The final values are impossible to recreate with a
serial log. This is default behavior in Clojure.

Variable Initial Value Final Value
x 0 1
y 0 0
a 0 1
b 0 0

Table 2.1: Values of variables in Fig 2.6
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Listing 2.6: Two transactions that should respect the invariant that x and y are always equal.

1 ;; T1
2 ;; x, y and a initially 0
3 (dosync
4 (alter x inc)
5 (ref-set y @a))

1 ;; T2
2 ;; a, b and x initially 0
3 (dosync
4 (alter a inc)
5 (ref-set b @x))

L = read[x] < write[x] < read[a] < write[y]︸ ︷︷ ︸
T1

< read[a] < write[a] < read[y] < write[b]︸ ︷︷ ︸
T2

Figure 2.7: Example transaction log for Figure 2.6

1-Copy Serializability

1-copy serializability is a form of serializability that is useful when testing the correctness of
multi-version concurrency control systems (Bernstein & Goodman, 1983). It is a stricter form
of serializability in the sense that it takes versions of variables into the equation. Simply put,
this correctness criterion holds for all MVCC transactional models that can be serialized as
if there was only one version per variable. Using the formal model previously defined 1-copy
serializability can be defined as follows.

Each write by process Ti, previously written as write[x] now produces a specific version, xi.
Hence, we write write[xi]. When any process T reads a variable, the version will be denoted; we
write read[xi]. Thus, a read operation can have a different result depending on the position in a
sequential log. Finally, the reads-x-from relation changes. The relation between two processes Ti
and Tj only holds when Tj reads the value of x and the last write done before that read operation
was a write by Ti, and thus Tj reads the value that was produced by Ti. Operation conflicts now
only arise when two transactions read or write the same version of a variable.

A 1-copy serializable log is a stricter form of a serializable log. It has to satisfy an additional
property with respect to serializable logs (5). A serializable log is 1-copy serializable if and only
if the following properties hold.

(1) For each pair of transactions in T , e.g., Ti and Tj , every operation of Ti must precede Tj
or every operation of Tj must precede every operation of Ti.

(2) Each read operation in the log L must still yield the same result as it did in the concurrent
execution that was accepted by the transactional system.

(3) Each transactional variable must have the same value after executing the sequential log as
it had when the transactions were executed concurrently.

(4) Any sequence of transactions issues by a single process must be executed in that same
order in the serial log.
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(5) If a process Tj reads a version xi from x then the last write operation to x that happens
before the read by Tj in the serializable log is a write operation by Ti.

The previous Clojure example (Figure 2.6) is not serializable and thus not 1-copy serializable.
We can apply the ensure operations to make the example serializable and 1-copy serializable.
The modified source code is shown in Figure 2.8 and the new result set is shown in Table 2.2.

If a transaction τ calls ensure on a variable x, x can not be written to in global memory as
long as τ is running. Intuitively ensure has the same semantics as a so-called dummy write. τ
could read the value of x and write that value back. This would have no effect other than adding
a new version with the same value when τ commits. Thus, while τ is running, τ is guaranteed
that when it commits, it has used the latest version of that variable before τ started and no
other versions have been created since τ started. Since this is a common pattern, ensure mimics
these semantics.

To prove that this example is serializable a serialized log is shown in Figure 2.9. One can
verify that this log adheres to the properties of 1-Copy Serializability as well.

Variable Initial Value Final Value
x 0 1
y 0 0
a 0 1
b 0 1

Table 2.2: Values of variables in Fig 2.6

Listing 2.8: Two transactions that should respect the invariant that x and y are always equal.

1 ;; T1
2 (dosync
3 (alter x inc)
4 (ref-set y (ensure a)))

1 ;; T2
2 (dosync
3 (alter a inc)
4 (ref-set b (ensure x)))

L = read[x0] < write[x1] < read[a0] < write[y1]︸ ︷︷ ︸
T1

< read[a0] < write[a1] < read[y1] < write[b1]︸ ︷︷ ︸
T2

Figure 2.9: Example transaction log



3
Combining Actors and STM

The actor model has a number of properties that can be beneficial for software developers.
The strict isolation of different actors increases security and fault-tolerance and avoids safety
issues such as low-level race conditions. The downside is that the actor model compromises on
expressiveness, especially when modeling access to a shared resource. Other researchers have
identified that developers mix the actor model with other concurrency models (Tasharofi et al.,
2013) to overcome these issues. This chapter presents the inadequacies of the actor model as a
stand alone concurrency model, especially concerning the modeling of access to a shared resource.
Additionally, this chapter shows that an ad hoc integration of another concurrency model such as
software transactional memory compromises on the safety properties of the original actor model
and that a tighter integration of both models is necessary.

3.1 Inadequacies of the Actor Model
3.1.1 Shared State in Actors
The actor model traditionally does not support shared memory. This is ensured by the isolation
principle (Karmani et al., 2009) (chapter 2). No actor can have synchronous access to the state
of any other actor. The only means of accessing state outside of the actor is by means of the
asynchronous messaging paradigm. However, a shared mutable resource can be modeled by the
actor model nonetheless, this is called a delegate actor. A delegate actor is a common idiom
in actor programming because it allows one to encapsulate state into an actor and sharing this
resource by passing the address of the actor. The delegate actor will then expose the value to
the rest of the system using a specific vocabulary (e.g., update-value and read-value). Any
other actor that has the address can then read and write to this actor. This effectively yields
shared mutable and isolated state. However, as we will see it has of downsides as well.

Figure 3.1 is a schematic representation of a delegate actor. The circles represent actors.
The square represents the isolated state of a single actor that is only accessible from within that
actor. As we can see the state of the cell actor (i.e., a delegate actor) is only accessible through
the cell actor by means of message passing. The actor can then reply with a message that carries

26
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with it the current internal state. Messages are represented by arrows.

Figure 3.1: Model of a delegate actor representing shared mutable isolated state

In Listing 3.1 a small program is shown that represents a cell actor. The cell function
represents the behavior of a delegate actor. The actor understands two messages: “set” and
“read”. The former allows any actor to set a new value in the actor and the latter allows any
actor to request the current value of the cell actor. By passing the address of this cell around
actors can share common state.

Using an actor in this fashion introduces race conditions on the message level that are well
known in concurrent programs that allow shared memory references. Just as with threads, this
can cause some unexpected interleavings. The reason for this is that the actor model does
not enforce any order on messages. As a result, messages coming from multiple actors can be
interleaved in an arbitrary order.

1 cell(Value) ->
2 receive
3 % Set a new value
4 {set , NewValue} ->
5 cell(NewValue );
6 % Read the current value
7 {read , Sender} ->
8 Sender ! {value , Value},
9 cell(Value)

10 end.
11

12 increment(Cell) ->
13 Cell ! {read , self()},
14 receive {value , OldValue} ->
15 Cell ! {set , OldValue + 1}
16 end.

Listing 3.1: Erlang implementation of a delegate actor.
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As an example of a bad interleaving suppose two actors A and B that want to increment the
value of a Cell actor. First A and B would need to send the read message in order to receive
the current value. Upon reception of the current value from Cell, A and B could then compute
the new value and send it to Cell to update. Supposing the initial value of Cell is 0. If actor
A sends read to Cell to request the current value and immediately receives the value. Before A
can send back his updated value, B might have already sent read and received the reply with
the current value (0). If both actors then send their new updated value, the final result will be
1, while one would expect it to be 2.

This problem could easily be fixed in many ways. The first one could be to semantically lock
the Cell. This could be done by introducing a protocol to access the actor. This changes the
behavior in such a way that once any actor A has sent a message, the Cell will only process
messages coming from A. When A is done using Cell he sends a message to release the ownership
of the actor. Only from that point other actors could change or read values back from the cell.
An example implementation in Erlang is given in Listing 3.2.

To acquire ownership of the Cell actor, an actor sends the startmessage to the actor together
with his own address (line 18). The Cell actor will then change his behavior to the first definition
of safeCell (line 1). At that point the actor only processes messages coming from the sender
that acquired the ownership. Extra code has been added to ensure that only the current owner
of the actor can update and read the state (lines 1, 4, 8, 11-12 and 18-19). The read, set and
release messages now expect an argument Sender. This will be the address of the sender.
When this address does not match the address of the currently owning actor, the message is not
processed.

One can immediately notice that the code is much more verbose and contains a lot of code to
properly handle the protocol to have exclusive access to the actor. There is extra state required
in the Cell actor as well. It now has to keep track of who the current owner is, explicitly. This
works reasonably well for a small Cell actor but it introduces the same issues as with manual
locking, which was one of the reasons to use actors in the first place.

Another thing to note is that the user of the code (i.e., safeIncrement) has to know that the
actor has an extended vocabulary to support the ownership protocol. The user itself then has to
adapt to this ownership protocol and implement extra vocabulary to operate properly with the
Cell actor. This damages modularity which is in contradiction with the Actor philosophy.

As for composability, using this form of ownership protocol, composability is most certainly
damaged. There is no way to lock the Cell from actor A, and then modify it from another
arbitrary actor. Since in traditional actor systems everything is an actor, chances are that
communication with another actor than Owner is required which is using the above transaction
system impossible.

Considering the above solution one will also notice that in a scenario where only read oper-
ations are applied to the Cell actor, they are all performed in sequential order. This is a very
strict bottleneck for operations that in theory could be executed in parallel. However, there is
no way to emulate this behavior in a pure actor framework.

In conclusion, the proposed protocol solution does solve the problem at hand, however it
introduces accidental complexity that makes it very hard to reason over a system implemented
this way.
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1 safeCell(Value , Owner) ->
2 receive
3 % Read the current value
4 {read , Owner} ->
5 Owner ! {value , Value},
6 safeCell(Value , Owner );
7 % Set a new value
8 {set , NewValue , Owner} ->
9 safeCell(NewValue , Owner );

10 % Release the lock
11 {release , Owner} ->
12 safeCell(Value)
13 end.
14

15 safeCell(Value) ->
16 receive
17 % Lock the actor for Sender
18 {start , Sender} ->
19 safeCell(Value , Sender)
20 end.
21

22 safeIncrement(Cell) ->
23 Cell ! {start , self()},
24 Cell ! {read , self()},
25 receive {value , Old} ->
26 Cell ! {set , Old + 1, self()},
27 Cell ! {release , self()}
28 end.

Listing 3.2: Erlang implementation of a lockable delegate actor.

3.1.2 Motivating Example
In Listing 3.3 a variation on the consumer-producer problem is depicted. This scenario is a
classic example of thread synchronization in multi-threaded programs. The problem is that
one or more threads produce values and one or more threads consume values. The values are
stored in a shared buffer. The consumer should only consume a value if the shared buffer meets a
certain condition, e.g., the buffer is not empty. The producer can only produce values if a certain
condition is met as well, e.g., the buffer must be empty or it can not exceed a certain value. To
achieve this in Java for example, one would use locks to create a critical section in which each
thread can read and optionally update the shared buffer in a mutual exclusive manner. However,
the actor language, as we saw does not support shared memory. As such it is required to create
a protocol to synchronize access to a delegate actor. Listing 3.3 depicts such a protocol.

Syntax

The following example and scenarios are written in Clojure syntax, including the actor syntax of
the library that is built for this thesis. This allows for more visual explanations. We will require
a few key constructs: transactions, transactional variable read and write and message sending.
We will use “...+” to denote one or more arbitrary Clojure expressions.

• To create an actor one has to call the create-actor function. That function takes a
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keyword (a word that starts with a colon) to specify the actor name and a function that
defines the initial behavior of that actor. Each formal parameter of the function that is
given has to be initialized with a value as the last arguments of the call to create-actor.

1 (create-actor
2 :counter-actor
3 behavior-fn)

• A transaction is executed by wrapping an arbitrary number of statements in a dosync block.
The transaction ends with the last statement in the block. To write to a transactional
variable one can use the ref-set! construct. It takes a transactional variable and a new
value. To read the value of a transactional variable – which can be done outside of a
transaction as well – one can use the @ construct.

1 (dosync
2 (ref-set! a (+ x 1)) ;; Set the value of a
3 (println @a) ;; Print the value of a to stdout
4 ...+)

• To process messages from the in-box the receive block is used. Intuitively speaking the
receive block works the same as a case statement in a lot of languages. Each case defines
a message and possible arguments that are attached to that message. The receive will
block until one of the cases has been matched with a message.

1 (receive
2 ([ :message1 ]
3 ...+)
4 ([ :msg2 arg1 arg2]
5 ... +))

• To send a message to an actor the ! construct is used. It takes a keyword that identifies
an actor and a message with possible arguments. If there are arguments they are put as
last argument to ! in a map. The keys are the names of the parameters of the receiving
actor.

1 ;; Send message "message1" to actor.
2 (! actor :message1 )
3 ;; Send message with two arguments , x and y.
4 (! actor :message1 {:x x :y y}])
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Apples and Oranges

The program in Listing 3.3 shows the consumer-producer program using solely actors. In this
program a single producer will produce apples and oranges. The condition on the buffer in order
to produce new apples and oranges is that the buffer must be empty. The consumers in this
example can only consume values if the the buffer is not empty.

Lines 1-13 define the delegate actor that will be used as the shared buffer in this example.
Lines 15 - 29 define the consumer actor and lines 33 to 36 are top-level statements to initiate the
program.

The data-actor has a complex vocabulary because a protocol is used to make sure a single
thread can “lock” the actor until it is done. Note that this protocol is specific for this program
and is thus not generically applicable.

If an actor wants to read and possibly update the values in the delegate actor it has to first
send a :lock (line 4) message to the delegate actor and then await an acknowledgement of the
delegate actor which will reply with an :ok message (line 5). After the acknowledgement the
actor that uses the delegate actor has exclusive control over it. It is allowed to read the state by
sending the :read message (line 7). After that the delegate protocol will only accept :unlock
or :update (lines 10-13). Upon reception of either messages the delegate will release the lock
and accept a new :lock message (lines 11 and 13).

The consumer actor will wait for :consume messages (line 17). If the actor receives such
a message it will first lock the delegate actor (line 19). After that the actor blocks until it
receives an acknowledge message (line 20). To read the state it sends the :read message (line
22) afterwards and awaits for the delegate actor to reply the current state of the buffer (line 23).
If the buffer is not empty the consumer will reply with an :unlock message (line 29), if not, it
will reply with a data update in which there is one less apple and one less orange (line 27-28).

Lines 49 to 52 are the top level statements that start off this example. Line 49 creates 100
consumers. Line 50 creates a single producer and line 52 sends the initial :produce message to
the producer actor.
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1 (defn data-actor
2 [data]
3 (receive
4 ([:lock sender]
5 (! sender :ok) ; Acknowledge lock to sender
6 (receive
7 ([:read sender] ;; Wait for a read
8 (! sender :data {:data data}) ;; Send the data
9 (receive

10 ([:unlock] ;; Wait for an unlock or an update
11 (recur data))
12 ([:update [newdata ]]
13 (recur newdata ))))))))
14

15 (defn consumer
16 [data-actor]
17 (receive
18 (([:consume]
19 (! data-actor :lock {:sender *self*})
20 (receive
21 ([:ok]
22 (! data-actor :read {:sender *self*})
23 (receive
24 ([:data {:apples appls :oranges orngs}]
25 (if (and (> appls 0)
26 (> orngs 0))
27 (! data-actor :update {:newdata {:apples (dec appls)
28 :oranges (dec orngs )}}])
29 (! data-actor :unlock ))))))))
30 (recur data-actor ))
31

32 (defn producer
33 [data-actor]
34 (receive
35 ([:produce]
36 (while true
37 (! data-actor :lock {:sender *self*})
38 (receive
39 ([:ok]
40 (! data-actor :read {:sender *self*})
41 (receive
42 ([:data {:apples appls :oranges orngs}]
43 (if (and (= appls 0)
44 (= orngs 0))
45 (! data-actor :update {:newdata {:apples (inc appls)
46 :oranges (inc orngs )}}])
47 (! data-actor :unlock )))))))))
48

49 ;; Create 100 consumers and 1 producer
50 (let [consumers (map (fn [x] (create-actor (keyword x) consumer ))( range 100))
51 producer (create-actor :producer producer consumers )]
52 ;; Start off the producer loop
53 (! producer :produce ))

Listing 3.3: Producer Consumer problem implemented in the Clojure actor library using solely actors.

The example shows that using shared mutable state in the actor model is not really convenient.
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The code is very verbose and most of the program is dedicated to ensuring the correctness of the
protocol.

The example relies heavily on convention. If the user of the shared state actor does not obey
to this convention the system will fail. One actor who is waiting on the reply for the :read
message can not be ensured that the message will be sent. It is very much possible that another
actor did not obey to the convention and sent a :read message without acquiring ownership.

The example should reflect that it can be very desirable to be able to use other concurrency
paradigms in certain scenarios.

3.2 Ad-hoc Combination of the Actor Model and STM
Given the previous consumer-producer example it is desirable to combine another concurrency
model with the actor model to simplify certain programs. We will combine the actor model with
software transactional memory to reduce the size of the example and improve readability and
safety. However, as we will shortly see, the ad-hoc combination of these two models introduces
several issues that need to be addressed.

3.2.1 Motivating example revisited
The example from subsection 3.1.2 can be improved vastly by using software transactional mem-
ory to manage the critical section, i.e., reading and updating the shared state. Listing 3.4 depicts
the same program but this time software transactional memory was used.
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Apples and Oranges with STM

1 (def apples (ref 0))
2 (def oranges (ref 0))
3

4 (defn consumer
5 []
6 (receive ([:consume]
7 (dosync
8 (let [orangecount (ensure oranges)
9 applecount (ensure apples )]

10 (when (and (> orangecount 0)
11 (> applecount 0))
12 (ref-set! oranges (dec orangecount ))
13 (ref-set! apples (dec applecount ))))))))
14

15 (defn producer
16 [consumers]
17 (receive ([:produce]
18 ;; Keep producing
19 (while true
20 (dosync
21 (let [orangecount (ensure oranges)
22 applecount (ensure apples )]
23 (when (and (= orangecount 0)
24 (= applecount 0))
25 (ref-set! oranges (inc orangecount ))
26 (ref-set! apples (inc applecount ))
27 ;; Notify consumers
28 (map (fn [c] (! c :consume )) consumers )))))
29 (recur consumers)
30

31 ;; Create 100 consumers and 1 producer
32 (let [consumers (map (fn [x] create-actor (keyword x) consumer) (range 100))
33 producer (create-actor :producer producer consumers )]
34 ;; Start off the producer loop
35 (! producer :produce ))

Listing 3.4: Producer-Consumer pattern implemented in the Clojure actor library using STM.

Listing 3.4 defines, just as in the previous version of the example, a producer and a consumer.
Lines 4 to 13 define the consumer. Each time the consumer receives a :consume message (line
6) the consumer will initiate a transaction (lines 7 to 12). The consumer will then read the
transactional variables (lines 10 and 11). If the there are more than 0 apples and oranges the
consumer will take one of each and update the global variables accordingly. Finally, the consumer
will await the next :consume message.

The producer (lines 15 to 29) will await a single :produce message. Upon reception it will
start an infinite loop. In each iteration of this loop the producer will read out the current value
of the apples and oranges. If there are no apples and oranges the producer will create one of each
(lines 25 and 26). After the update the producer will send a message to each consumer (line 28).
Finally, the transaction ends and the producer starts the next iteration.
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3.2.2 Discrepancies of the the Ad-Hoc Combination
Given that transactions are executed one or more times the programmer has to avoid expressions
with side effects in a transactions. Examples are disk I/O or network calls. The reason being
that those expressions are not aware of their context (i.e., executing inside a transaction) and
transaction can possibly re-execute. It is the task of the transaction to be aware of the statements
executed inside of it and handle them appropriately.

When combining the actor model with STM, message sends that happen inside a transaction
have to be treated differently than those outside of a transaction. Furthermore, transactions
have to be aware of the context they are executed in themselves.

In context of actors, sending a message can be considered an I/O action. When executed it
changes the state of a part of the system; the in-box of the addressee is changed. This action can
not be undone strictly speaking. If it could be undone by the sending actor this would violate the
state encapsulation principle(Karmani et al., 2009) because the sender would be able to modify
the receiver’s in-box. Ergo, care has to be taken on the receiver side when processing a message
that was sent from within a transaction. Combining actors and STM also requires us to reason
about what happens when a transaction fails or what has to be kept track of if a transaction is
started inside of a receive block.

We will now discuss a few key scenarios that are the foundation of the problems that arise
when combining the actor model with software transactional memory.

Sending Messages

Listing 3.2: Sending a message inside a transaction.
1 (dosync
2 (! :counter :increment)
3 (ref-set! var 42))

Listing 3.2 implies that we are doing an I/O action inside of a transaction: a message send.
A simple example of a send within a transaction is shown in Listing 3.2. The piece of code
depicts a transaction that sends a message “:increment” to actor :counter (line 2). After that,
the snippet depicts a ref-set! (line 3). As discussed before, this is a write to a transactional
variable and thus is prone to failure. If the write fails due to another transaction having written
a newer value to it since the transaction started, the transaction will retry. Consequently the
message to :counter will be sent again. Without any further action the previous message will
still be in the in-box of :counter, unless the actor has already processed it. This is a problem
because the message is sent an arbitrary amount of times depending on the number of retries of
the transaction. This is in conflict with the intended behavior of the program as the increment
message should only be sent once.

Receiving Messages

Listing 3.3 will be used to explain the notion of dependencies. The example depicts a scenario of
a simple counter actor. Upon reception of the “:increment” message, the actor will increment its
state by one. Hence, the message receive has a side effect. The statement on line 6 is a recursive
call to the actor’s behavior function. The parameter for the recursive call is thus the incremented
counter.
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Listing 3.3: A receive example that changes the state of an actor.
1 (create-actor
2 :counter-actor
3 (fn [counter]
4 (receive
5 ([:increment ]
6 (recur (inc counter ))))))
7

8 ;; Sending message
9 (dosync

10 (! :counter :increment)
11 (ref-set! var 42))

The actor in isolation does not have a problem with transactions, as it does not use them.
However, when combined with a system that does use STM additional bookkeeping is required.
Considering that a message sent to this actor can come from within a transaction. If that
transaction is not yet committed, it can potentially abort and be re-executed. In that case,
the message can potentially be resent or not sent at all depending on how that transaction is
re-executed. This means that the processing of messages that are sent from within a transaction
needs to incorporate the transactional behavior of that transaction.

Listing 3.4: A counter actor that increments a local variable and logs this action.
1 (create-actor
2 :counter-actor
3 (fn [counter]
4 (receive
5 ([:increment ]
6 (! :log-actor :log {:line "incremented counter"})
7 (recur (inc counter ))))))
8

9 ;; Sending message
10 (dosync
11 (! :counter :increment)
12 (ref-set! var 42))

A second scenario to consider is what happens when a message is being sent from within
a receive. Listing 3.4 depicts the definition of an actor :counter-actor. The actor processes
:increment messages and upon each message it logs the increment operation by sending a
message to the :log-actor actor. After that the behavior is executed again by calling recur,
which calls the function again with the incremented counter.

Looking at a modified example in Listing 3.4 we can see that this time a new send is embedded.
The counter now sends a message to a logging actor that asks it to log the increment operation
(line 6). As stated before, in case of failure a transaction should undo all its operations. However,
the message send can not be undone and therefore the line will be logged as many times as the
transaction is executed while the counter is only incremented once.

Another problematic scenario is a transaction that is started as the result of receiving a
message. Transactions are used to synchronize access to a set of variables such that the updates
happen atomically. Hence, it is not unthinkable that a receive body uses a transaction to achieve
this effect. In Listing 3.5 the :counter-actor actor is depicted. This time it has no local state
but uses a transactional variable to which a reference is stored in the state of the actor. As such,
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Listing 3.5: Receiving a message and executing a transaction inside the receive body.
1 (create-actor
2 :counter-actor
3 (fn [counter]
4 (receive
5 ([:increment ]
6 (dosync
7 (ref-set! counter (+ @counter 1))
8 (! :log-actor :log {:line "incremented counter"}))))
9 (recur counter ))))

10

11 ;; Sending message
12 (dosync
13 (! :counter :increment )
14 (ref-set! var 42))

a transaction is required to modify it (lines 6-8). In the receive body of :increment the actor
starts a transaction. It reads out the previous value and sets it with the incremented value (line
7).

If the :increment message did not come from within a transaction there is no immediate
problem. The actor can simply execute his receive body and the including transaction as many
times as he needs to until it succeeds. However, the problem resides in the possibility that the
:increment message can be sent from within a transaction.

If the :increment message has been sent from within a transaction it is possible that safety
can not be guaranteed. Traditionally, in STM, a nested transaction becomes part of the parent
(i.e., enclosing) transaction. In order for the parent transaction to succeed, all nested transactions
have to succeed. However, when those nested transactions cross actor boundaries this is no longer
the case. In Listing 3.5 the inner transaction on line 6 is independently executed from the parent
transaction that was initiated before sending the :increment message on the sending actor.

Suppose that the transaction that sent the message :increment, Tsend, is still running while
the :counter-actor actor reaches the end of its transaction Tcount (line 8). If it commits it
changes to the global heap there is no way to revert those changes. Thus, if Tsend should retry
the counter is incremented for each attempt at the transaction.

The code listing in Listing 3.6 depicts one of the more difficult situations. There are two actors
present in this example, :swap-actor and :compute-actor. The latter responds to a message
:compute (line 16-20). The message has three arguments, three references to transactional
variables (line 16). Upon reception the :compute-actor will start a transaction. Inside that
transaction it sends a message to the :swap-actor to swap the values in both transactional
variables (line 18). After that the actor waits for an acknowledgement from the :swap-actor
(line 19). The final expression in the transaction (line 20) stores the difference of the swapped
variables in the result variable.

The former actor, :swap-actor, responds to a :swap message with 3 arguments. The ex-
pected arguments are two transactional variables and a name of an actor (line 5). Upon reception
of the message the actor will start a transaction. Inside the transaction it will swap the values
of the two given transactional variables (lines 7-9) and finally, after the transaction reply to the
sender that the values have been swapped.

The actor :compute-actor starts a transaction to send the swap request to the :swap-actor.
This means that the message can be sent multiple times. The :compute-actor receives this
message and starts a transaction as well. Hence, if the transaction in the compute actor fails
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Listing 3.6: Transaction in a receive body that was initiated from within a transaction.
1 (create-actor
2 :swap-actor
3 (fn []
4 (receive
5 ([:swap ref-a ref-b sender]
6 (dosync
7 (let [temp @ref-a]
8 (ref-set! ref-a @ref-b)
9 (ref-set! ref-b temp )))

10 (! sender :finished ))
11 (recur )))
12

13 (create-actor
14 :compute-actor
15 (fn []
16 (receive
17 ([:compute a b c]
18 (dosync
19 (! :swap-actor {:ref-a a :ref-b b :sender *self*})
20 (receive ([:done ]))
21 (ref-set! result (- @a @b )))))))

twice, the variables will be in their initial position, i.e., not swapped. The second problem that
can arise in this scenario is when the transaction of the sender, :compute-actor fails after it
has received the acknowledgement of the :swap-actor. The actor will write the difference of
both values into the result transactional variable. If that variable has been written to in the
mean time the transaction will abort. As such, one might intuitively expect the swap to never
have taken place but that action can not be undone. Consequently, the second attempt of the
transaction will request the variables to be swapped again. This would yield a faulty result if
the transaction succeeded.

3.3 Conclusion
This chapter has made it clear that the actor model used in isolation is lacking when it comes to
expressiveness regarding certain programming tasks. It is certainly helpful to be able to combine
it with software transactional memory to increase readability and maintainability. However,
combining both models can not be done ad-hoc but requires specific runtime support.



4
Actransors

In the previous chapter we discussed the discrepancies that exist when the actor model is com-
bined with transactional memory without any intervention of the runtime. In this chapter we
will explain a solution that defines what actions the runtime should take in each of the previously
stated problem scenarios and as such mitigates the discrepancies of the ad-hoc combination of
actors and STM. A short introduction will be given to concepts that are the foundation of the
solution which is followed by a high level explanation of the solution to theproblem scenarios
given in the previous chapter.

The solution proposed in this thesis will allow one to use transactions in combination with
the actor model. The solution will absorb message sends into the transactional model such
that messages are handled properly in a transactional context and can be safely sent inside
transaction.

4.1 Actransor Concepts
In this section we will explain the basic concepts that are used when discussing problem scenarios
and solutions.

4.1.1 Context
A context is an implicit status of any given actor at runtime. The context helps us reason
about which course of action the runtime should take during a transaction or a receive block.
A volatile context is a context that may fail and re-execute. The body of a transaction is thus
a volatile context. A stable context is the opposite of a volatile context: a context that will
surely finish executing – disregarding application level exceptions and programmer errors such
as infinite loops. And finally, a depending context is a context in which the executing actor is
depending on another actor or transaction. Thus, an actor can be in a volatile state while being
in a depending state as well.
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4.1.2 Dependency
In the context of the actor model each computation is initiated by means of a message send. A
message send will eventually invoke a computation in an actor (fairness). If an actor starts a
transaction and sends a message inside that transaction that message too will invoke a compu-
tation. At the point of invocation of that computation the executing actor is depending on the
sending actor. The sending actor can not guarantee that its transaction will finish. The sender is
in a volatile context. Hence, the receiving actor will have to take this into account before ending
his atomic turn, i.e., processing the next message.

Dependency Propagation

Dependency propagation is the notion of passing along dependencies during message sending. If
an actor A depends on an actor B and sends messages to other actors these actors should also
depend on B. Thus, each time an actor sends a message to other actors it passes its dependencies
along with that message.

Dependency Gathering

The actor model we are using for our experiments and on which the formal semantics discussed
in chapter 5 are based, is inspired by the Erlang actor language. This means that an actor is
a running process that can execute receive statements at any given point during the execution
of that process. A receive statement is a normal expression so they can be nested arbitrarily.
As such, an actor that depends on another actor can still receive another message which also
contains a dependency. This allows an actor to gather dependencies and depend on a set of
actors at any given point during its execution.

4.2 Discrepancies resolved

Listing 4.1: Sending a message inside a transaction.
1 ;; Sending message
2 (dosync
3 (! :counter :increment)
4 (ref-set! var 42))
5

6 ;; Counter actor
7 (create-actor
8 :counter
9 (fn [counter]

10 (receive
11 ([:increment ]
12 (recur (inc counter ))))))

Listing 4.1 depicts the first example from the previous chapter (lines 1-4). Lines 6 to 12 show
the actor the :increment message is being sent to.

Lines 1 to 4 show a transaction. Inside that transaction a message is sent to the :counter
actor and afterwards the transactional variable var is updated to 42. Lines 6 to 12 depict the
actor that will handle the message. Upon reception it will simply end the behavior function and
re-execute it with the counter incremented by one (line 12). The proposed solution here is to
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Figure 4.2: Dependency graph of Listing 4.1

attach metadata to the message. The message will contain a reference to the transaction object
which allows the receiver to determine if the sending transaction is still executing, has committed
or has retried at any time. In this particular case the sender (line 3) will attach the metadata to
the message. Upon reception (line 10-12) the counter actor will notice that this message comes
from a volatile context and thus become depending on the sender. When the actor reaches the
end of its receive body (line 12) it will wait for the transaction of the sender (line 2-3) to change
to a committed or aborted state. If that transaction successfully commits the counter actor can
safely process the next message. Hence, in between the end of the receive and the processing of
the next message the counter actor is in a stable state. If the transaction were to fail or retry
the counter actor should abort its receive body as well. As a consequence the counter inside the
actor will not be incremented, which is the desired behavior. The message :increment will be
removed from the in-box of the message and the counter actor will simply wait for the messages
to be sent again (line 3). This yields the desired behavior. The counter of the counter actor will
only be incremented once if the transaction safely commits. If it does not the counter will be
unaffected.

Figure 4.2 shows the dependency graph for Listing 4.1. The rectangle represents the trans-
action from the example (lines 2-4). The circle represents an actor, in this case the :counter
actor. A solid line going from the transaction to the actor indicates a message send. In this case
the sent message is the :increment message. The message is marked with a star on the right
hand side to indicate that it carries a dependency. Upon reception the counter actor becomes
dependent on the transaction, which is depicted by a dotted arrow.

Listing 4.3: A counter actor that increments a local variable and logs this action.
1 (create-actor
2 :counter-actor
3 (fn [counter]
4 (receive
5 ([:increment ]
6 (! :log-actor :log {:line "incremented counter"})
7 (recur (inc counter ))))))
8

9 ;; Sending message
10 (dosync
11 (! :counter :increment)
12 (ref-set! var 42))
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Figure 4.4: Dependency graph of Listing 4.3

The program in Listing 4.3 depicts a variation on the previous problem. Recall that in the
previous chapter we discussed that the issue with this program is that the :counter-actor sends
a message to another actor while it depends on a transaction. If the sending transaction (line
10-12) re-executes the :counter actor should also retry. The previous example in this chapter
covered this scenario. This scenario introduces dependency propagation. Sending :log to the
logging actor does not happen in a transaction (line 6). However, the context it is sent in is
a depending context. The counter actor depends on the transaction that sent the :increment
message (line 10-12). As such, that dependency is propagated by attaching it to the message.
This effectively makes the logging actor depend on the transaction in lines 10 - 12. This reduces
the problem to the problem of the previous example. The logging actor will also wait until the
transaction that sent the :increment message commits. If it were to fail the logging actor will
abort as well and process the next message.

Figure 4.4 depicts the dependency graph for Listing 4.3. The only addition with respect
to the previous version (Figure 4.2) is the :log-actor. The actor receives a message from
the :counter actor and consequently depends on the initial transaction. Notice that the :log
message has a star on its right hand side as well. This is due to the fact that the message
propagates dependencies.

Listing 4.5: Receiving a message and executing a transaction inside the receive body.
1 (create-actor
2 :counter-actor
3 (fn [counterref]
4 (receive
5 ([:increment ]
6 (dosync
7 (ref-set! counterref (+ @counter 1))
8 (! :log-actor :log {:line "incremented counter"}))
9 (recur counterref )))))

10

11 ;; Sending message
12 (dosync
13 (! :counter :increment )
14 (ref-set! var 42))

The example in Listing 4.5 shows the counter actor again. This time the counter actor will
have a reference to a transactional variable in the global heap to store its current counter value.
The actor will keep the reference to this variable as its state (counterref). Upon reception of
the :increment message (line 4) the actor will start a transaction to increment the counter by
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one (line 7). Afterwards the actor sends a message to a logging actor to log the operation. Note
that the message to the :counter actor is being sent from within a transaction (line 11-13).

Recall that the problem here is that the :counter actor is receiving the :increment message
from within a transaction and executes a transaction itself. If the transaction in the :counter
actor commits before the transaction of the sender commits the changes can not be undone.
As a consequence, if the sending transaction (lines 12-14) executes again the counter will be
incremented whilst it should not have incremented yet.

The proposed solution in this scenario is introducing an intermediary state for a transaction.
The issue in this case is that the receive statement executed by the :counter-actor (lines 5-9)
depends on the sending transaction in its entirety. This means that not only the transaction
of the :counter-actor is depending, the context it resides in is also depending on the sender.
For the sake of argument we will assume that this example is executed in isolation and the
:counter-actor does not have any other dependencies. Thus, when the transaction would
normally commit, i.e., at its syntactical end (line 8), the transaction will go into an intermediary
state. This allows the rest of the receive block to finish (line 9) and reach the end. It is at the
end of this receive block that the the dependencies are checked. If the dependencies – in this
case the sender of :increment – have all committed the transaction in the :counter-actor can
safely commit as well and the receive block can safely finalize.

In case the sending transaction fails the counter actor will fail to resolve the dependency at
the end of the receive block. As a result it will not commit the transaction log to the global heap
and jump back to the beginning of the receive statement. The message that initiated the receive
block, :increment will be removed and the actor will wait for the next message.

The protocol described above ensures that no changes are committed to the global heap
and as such the counter will not be incremented unless the sending transaction commits. This
effectively ensures that the intended program behavior is preserved.

Listing 4.6: Example of nesting a receive and executing a transaction inside the receive body.
1 (create-actor
2 :logging-actor
3 (fn []
4 (receive
5 ([:log line]
6 (receive [:logwriter writer]
7 (write writer line ))))
8 (recur )))
9

10 ;; Sending message
11 (dosync
12 (! :logging-actor :log {:line "log this line"})
13 (ref-set! var 42))

The program depicted in Listing 4.6 depicts the :logging-actor (line 1-7) . This actor’s
dictionary defines a single message :log. The message has a payload line. This contains a
line that the actor has to write to a log. The outputstream to write the line to will be sent as
an additional message. After receiving a :log message the actor will block until it receives a
:logwriter message. This message will carry with it a reference to a writer, e.g., a reference to
stdout. Upon reception of that message the logging actor will write the line.

Recall that the problem in this scenario is that the logging actor possibly receives the :log
message multiple times if the sending transaction (line 10-12) re-executes. The :logwriter
message however is not sent from within a transaction and as such will only be sent once. If the
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logging actor retries it will thus not receive that message again.
To solve this issue we propose the following. When an actor receives a message that has no

messages associated with it the receiving actor can rest assured that this message is intended
to be sent once and will only be sent once. If it were to be sent in a volatile context – and
potentially multiple times –it would have had a dependency attached. As such, the actor marks
the received message accordingly and does not remove it from its in-box upon failure.

If the actor’s receive body were to fail it will iterate all the processed messages during that
receive block and nested receive blocks. If any of the messages are marked as having no de-
pendency the message is remarked as a newly arrived message. When the actor then retries his
receive body he can simply receive the same message again without the sender having to resend
it.

Applying this protocol to the scenario depicted in Listing 4.6 will ensure that the program
behaves as intended. If the transaction in which :log is sent fails the logging actor will abort
his receive body at line 7. Before re-executing the receive statement the :logwriter message
will be reprocessed such that the logging actor observes it as a newly arrived message. Con-
sequently, the transaction in line 10-12 can retry together with the receive body of the logging
actor independently of the sender of :logwriter.

Listing 4.7: Transaction in a receive body that was initiated from within a transaction.
1 (create-actor
2 :swap-actor
3 (fn []
4 (receive
5 ([:swap ref-a ref-b sender ]]
6 (dosync
7 (let [temp @ref-a]
8 (ref-set! ref-a @ref-b)
9 (ref-set! ref-b temp )))

10 (! sender :finished ))
11 (recur )))
12

13 (create-actor
14 :compute-actor
15 (fn []
16 (receive
17 ([:compute a b result]
18 (dosync
19 (! :swap-actor :swap {:ref-a a :ref-b b :sender *self*})
20 (receive ([:finished ]))
21 (ref-set! result (- @a @b )))))))

Listing 4.7 depicts the problem scenario of the transaction in a depending context. The
problem in this scenario is that the actor :compute-actor its transaction may retry when it
tries to write a new value to result. As such the swap actor will be invoked again and that will
in turn swap the variables again. We want to programmer to remain oblivious of the fact that
transactions can retry.

The proposed solution of waiting before committing a transaction does not work here. The
message send of the acknowledgement (line 10) only happens after the transaction has committed
(line 9). If the :swap-actor’s transaction were to wait on the sender’s transaction (line 17-20)
to commit the program would reside in a deadlock because :compute-actor’s transaction will
only commit after it received the acknowledgement.

To this end we propose to stall a transaction. Intuitively speaking the effects of the swap
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actor are part of the side-effects of the transaction running in the :compute-actor. As such,
they should only become visible when :compute-actor finalizes its receive block.

A stalled transaction will not commit and not retry. The transaction simply pauses before
executing the commit protocol, i.e., commiting to the global heap. This allows for the depending
receive block of :swap-actor to fully execute and send the acknowledgement. As a result both
actors will reach the end of their receive blocks.

Listing 4.8: Dependency graph of Listing 4.7

At this point :swap-actor depends on the transaction of :compute-actor and is thus in
a depending state. Figure 4.8 depicts this scenario. The :compute-actor sends the :swap
message which carries a dependency to :swap-actor. When :swap-actor processes this message
it becomes depending on the :compute-actor, hence the dotted line going from :swap-actor
to :compute-actor.

:compute-actor depends on the transaction of the :swap-actor because the acknowledge-
ment message carried a dependency. Hence, the actors have a dependency cycle. Figure 4.8
shows this cycle by means of the dotted arrows. :swap-actor has an outgoing dotted line to
:compute-actor and vice versa.

:compute-actor can not commit its transaction safely until the transactions on which it
depends are never going to fail anymore. The transaction of :swap-actor is in the waiting
state, which is a promise to not retry anymore. This means that it is bound to commit if all its
dependencies resolve. Note that these are all either committed or waiting as well and thus can
not retry anymore either. As such, the transaction of :compute-actor can safely commit and
the rest of the enclosing receive block can be executed. In this case the rest of the receiveblock is
empty and :compute-actor reaches the end of its receive block. This block has no dependencies
and consequently the actor is finished.

:swap-actor is waiting to finalize its receive statement. The dependencies of that receive
statement have been resolved at the point that :compute-actor commited its transaction and
thus it is safe to change the state of the stalled transaction to waiting and subsequently commit.
The receive statement no longer has any dependencies left either so that can finalize as well.

As a result both transactions committed. They both committed at a point at which it was
certain that all the dependencies would no longer abort and retry. Thus making sure that the
runtime was not left in an inconsistent state.



CHAPTER 4. ACTRANSORS 46

4.3 Conclusion
This chapter has introduced the solution proposed in this thesis at a high level. It has shown
that the actor model and transactional memory can be combined while still maintain correctness
of the program. However, the runtime has to do additional bookkeeping.



5
Operational Semantics

5.1 Introduction
This chapter introduces a formalisation of the rules proposed in this thesis. First we will elaborate
on some concepts used throughout the chapter to allow concise reasoning. Next we will introduce
the grammar of the semantics and auxilary operations used in the rules. Finally we will elaborate
each rule briefly.

5.1.1 Concept
Contexts A context is an implicit status of an execution context. It will be used while rea-
soning about the current state of an actor.

• volatile A transaction is a “volatile” context in the sense that the computations inside
the transaction can possibly be executed multiple times. Hence, every computation done
inside that block should be either a pure computation (i.e., no side effects), revertible (i.e.,
undo the side effects) or be used with the possibility in mind that it might be executed
multiple times. For example, a print statement does not cause any immediate harm if
executed multiple times and can thus be used in a transaction. launch-missiles() on
the other hand can not be put inside the transaction unless the effects can be undone.

• depending A “depending” context is a kind of volatile context as well. An actor that
receives a message from a volatile context executes his receive body in a depending con-
text. The reason being is that the sending actor can retry its transaction and this should
consequently abort the computation of the receiving actor.

• stable Any other context of execution (i.e., not a transaction body) is therefore a stable
context.

Dependencies A message being sent from a volatile context attaches the current transaction
identifier to the message. All actions taken by the receiver after reception of the message are only
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valid if and only if the sending actor’s transaction succeeds. If it were to fail the receiving actor
should discard its computations and wait for the message to be resent. Suppose that the sender
sent the message as a consequence of a conditional. If the second attempt of the transaction
no longer sends this message by taking the other branch of the conditional the programmer
intuitively expects these computations to never take place. To make sure this can be done we
propose to make a receiver depend on the sending actor if there was a transaction identifier
piggybacking on the message, ergo, the message reception executes in a depending context.

Dependency Propagation Suppose that an actor a is in a depending context because it
received a message from an actor b that sent the message from within a transaction and was thus
in a volatile context. Upon reception of the message, a started a transaction as well and is thus
volatile and depending. If, inside the transaction in actor a a message is being sent the transaction
identifier of a should be passed along, as well as the dependency that was piggybacking on the
message a received. This means that the message has two dependencies. This approach can build
up an arbitrary long list of dependencies when actors keep sending messages in transactions.

Dependency Gathering Since the language we are modeling is an Erlang-like language the
programmer can write nested receives. If an actor is in a depending context and executes another
receive block in that depending context it might receive another message which holds another
dependency. This means that the actor is now depending on two different actors.

Message statuses When an actor processes a message it has to do some additional bookkeep-
ing in order to act appropriately when the message has to be discarded as a consequence of the
context it came from reexecuting. For instance a message that has been sent from a volatile
context that has now retried. This means that the message has to be discarded. However, it
would be cumbersome to keep track of where each message has been sent to and subsequently
make the sender delete them. Therefore we propose to make the receiver act appropriately when
it notices that a context has retried. This process has a lot of essential complexity. An actor can
send or receive messages from a stable, depending or volatile context. We will now discuss each
combination of contexts in which a message can be sent from and arrive in.

• stable → stable The basic case is an actor sending a message in a stable context and
an actor receiving it in a stable context. This means that the sender nor the receiver can
revert and retry computations, except at an application level. The receiving actor can thus
immediately mark the status of the message as processed, indicating it can be deleted
from his in-box.

• stable → volatile When an actor a in a stable context sends a message to an actor b
who receives it in a volatile context we can reason that the sending actor is not susceptible
to failure. However, b is. As such, b will mark the message as tx-processing to indicate
that the current actor is processing the message in a volatile context. If the transaction
were to retry the actor can mark every message that is flagged as tx-processing as new
again and retry in isolation of the sender.

• stable → depending applies the same rules as stable → volatile.

• volatile → stable If the sending actor a is in a volatile context it will attach its trans-
action identifier to the message. The receiving actor b will therefore execute the receive
behavior in a depending context. The message will be marked as processing by the re-
ceiving transaction.
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• volatile → volatile This case applies the same strategy as stable → volatile.

• volatile → depending This case applies the same strategy as volatile → stable.

• depending → stable This case applies the same strategy as volatile → stable.

• depending → volatile This case applies the same strategy as volatile → volatile.

• depending → depending This case applies the same strategy asvolatile → stable.

5.1.2 Notation Conventions
Ordered Lists An ordered list will be delimited by square brackets [ ]. A list can be prepended
to by using the double colon operator (::). A shorthand for list creation is available too. a :: (b ::
[]) can be written as [a b]. A shorthand to determine the length of the list l is len(l). A list l
can be deconstructed as x :: xs. This implies that x is the first element of the list and xs is the
tail of the list.

Tuples A n-ary tuple will be delimited by rectangular brackets. A 2-ary tuple containing 1
and 2 will be shown as 〈1, 2〉.

Maps A map is an unordered bag of unique values. An arbitrary map S can map a value onto
another arbitrary value. They will be used primarily to map identifiers onto entities. A map
can be accessed like a function call: S(x) will return the associated value of x out of the map.
S [a 7→ b] maps a to the new value b overwriting any possible existing value.

Values Values are represented by small letters. An arbitrary set of variables is represented
by a calligraphic letter (e.g., X ). The entire set of all possible variables in any system will be
denoted by the name in bold (e.g., “Variables”).

5.2 Grammar
5.2.1 Values
As in most calculi there is a minimal set of terms and values required to model standard behavior.
Table 5.1 lists all the values that are built into the semantics.

• Primitives is the set of all built-in functions such as - or +.

• Actor Ids represents the set of all globally unique actor identifiers.A new unique actor id
can be obtained by writing “a fresh”.

• Numbers are the set of all natural numbers, N.

• Boolean Values is the set of true and false.

• Variables is the set of all possible variables. These are globally unique. A new unused
variable identifier can be obtained by writing “x fresh”.

• Message Ids is the set of all possible message ids. In actual implementations a message
is usually labeled by a string (e.g., “compute”). However, for operational semantics it is
possible, without loss of generality, to use abstract globally unique identifiers.
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f ∈ F ⊆ Primitives ::= {+,−, ∗, ..}
a ∈ A ⊆ Actor Ids ::= {a1, a2, .., an}
i ∈ N ⊆ Numbers ::= N
b ∈ B ⊆ Boolean Values ::= {true, false}
x ∈ X ⊆ Variables ::= {x1, x2, ..xn}
r ∈ R ⊆ Transactional Variables ::= {r1, r2, .., rn}
m ∈ M ⊆ Message Ids ::= {m1,m2, ..,mn}

Table 5.1: Values

5.2.2 Expressions
Standard Expressions

Table 5.2 depicts the terms of the operational semantic. As one would expect all values shown in
Table 5.1 are proper terms. Table 5.3 depicts the standard expressions to do basic computations:
application of abstractions, application of a primitive function and chaining of expressions using
“;”.

v ∈ V ::= Values
| f
| r
| a
| i
| b
| x
| m
| λx.E Abstractions

Table 5.2: Values

E ::= V Terms
| (E E) Application
| (f v1, .., vn) Primitive app
| Et
| Ea
| E ; E Chaining

Table 5.3: Regular Terms

Actor Expressions

To model actor behavior there are not many terms needed. Evaluating “spawn a E” creates a
new actor with identifier a and behavior E . “! a m [E ]” sends a message m to actor a with
a possible payload. The payload is represented by an ordered list of standard expressions.
“receive [〈m [x]〉 E ]” starts a receive block with one or more receive cases. Recall that []
represents an ordered list. A receive block defines a message identifier for the message (m), a
list of unbound variables to bind to the payload ([x]) and a specific behavior to evaluate upon
reception of the message (E).
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Ea ::= spawn a E Spawn new actor
| ! a m [E ] Message send
| receive [〈m [x]〉 E ] Receive

Table 5.4: Actor Terms

Transaction Terms

The terms relating to transactional memory are atomic, set! and read. atomic takes an
expression E which will be executed in a transaction. It is only in such an expression that
transactional variables can be written to using the set! term. It requires a unique identifier
and a new value to be written to it. Reading a transactional variable can be done anywhere by
using the read term followed by a unique identifier.

Et ::= atomic E Transaction
| set! r v Set transactional var
| read r Read transactional var

Table 5.5: Transaction Terms

Syntactic Sugar

Syntactic sugar is defined syntax that enables easier programming, yet only uses constructs that
are already present in the language.

The chaining of expressions is syntactic sugar where the second expression is evaluated in a
lambda that takes as a parameter the first expression.

E1 ; E2 ≡ ((λ x . E2) E1) Transaction

Table 5.6: Syntactic Sugar

5.2.3 Semantic Domains
Semantic domains are entities that are used in the following rules. An entity is represented by a
calligraphic letter (e.g., D).

Messages

Table 5.7 depicts all the entities that are related to messages. Each one will explained in detail.

• M is an actual message. It can be deconstructed as a 6-tuple. The first entry m represents
the message identifier. as and ar represent the actor identifier of the sender and receiver
respectively. z represents the status of the message (e.g., tx-processing). [v] represents
the payload of the message. A message can contain zero or more values. These will be
matched with a receive block’s unbound variables. Finally D represents the transaction
identifiers that piggyback on the message.

• z ∈ Z represents the set of message statuses. The statusses are listed below.

• I is an in-box. An in-box is an ordered list of messages and is unique per actor.
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• Σ is a mapping from actor identifiers to in-boxes. It will be used to contain all in-boxes in
a global configuration.

Message M ::= 〈m, as, ar, z, [v], D〉
Message Status z ∈ Z ⊆ Flags ::= {processing, new, tx-processing, processed}
Message In-box I ::= [M]

In-boxes Σ = a 7→ I

Table 5.7: Message Entities

Actors

Table 5.8 represents the entities that relate to actors. Each of them will be discussed in detail.

• D represents a set of transaction identifiers.

• A represents an actor. The first part of the entity, D, contains all the dependencies that
are introduced while the actor is in a depending or stable context. When the actor is in
the stable context D is empty. When the first element is inserted the context of the actor
implicitly changes to depending. Dτ contains all the dependencies that are introduced while
the actor is in a volatile context, (i.e., running a transaction). τ will hold the transaction
identifier of the currently running transaction and is ⊥ if no transaction is running. E is
the current evaluation context. Er will hold a backup of the evaluation context. If an actor
changes from a stable context to a depending context (i.e., a message is received introducing
the first dependency into D) the current evaluation context is stored in Er. If at the end of
the receive block the actor concludes that any dependency in D has aborted it has to retry
its own evaluation of the receive block. E will then be replaced by Er.

• Θ contains a mapping from actor identifiers a to actor entities A.

Dependencies D ::= {τ}
Actor A ::= 〈D,Dτ , τ, E , Er〉
Actors Θ = a 7→ A

Table 5.8: Actor Entities

Transactional Memory Entities

• τ ∈ U represents a unique transaction identifier. Each time a new transaction is started a
new globally unique identifier is created using “τ fresh”.

• s ∈ S represents a transaction status. A transaction can be running which means it is
simply running. aborted means that the transaction encountered a conflict while reading
or writing a transactional variable and consequently aborted. An aborted transaction never
goes back to any other status, instead a new transaction is created. waiting means that
the transaction reached the syntactic end of its body but has not yet been committed.
committed means that the transaction has been committed and the changes are visible in
the global heap of transactional variables. Finally, stalled indicates that a transaction
has reached the syntactic end of its body but was not able to commit. If a transaction has
been started in a depending context it can not commit its changes at the end of the body.



CHAPTER 5. OPERATIONAL SEMANTICS 53

The reason being that the context it is executed in can still abort and be re-executed.
Hence, the changes of the transaction can only be committed at the point the depending
context is sure it can no longer be retried.

• ∆ is a heap that contains all the transactional variables and their value. As explained
before Multi version Concurrency Control is used for the software transactional memory.
As such, a single transactional variable is represented as 〈[(i, v)], τ〉. The first list represents
the history of the transactional variable. v represents the value and i represents the write
point (when it was written). The second part is a transaction identifier. If a transaction
is running and has written a value to a ref the transaction identifier is stored there. This
tells other transactions that try to write to it that it is in use and they should retry.

• T represents a transaction entity. iτ is the write point at which the transaction started.
The configuration (discussed below) contains the global write point. iτ is a copy of the
value of the global write point taken at the moment the transaction is started (i.e., when
evaluating atomic).

• Ω is a mapping from transaction identifiers to actual transaction entities. It is used for all
actors to be able to access the current status of a transaction.

• Ψ is mapping of transactional variable identifiers to values. A transaction will keep track
of the current value of a transactional variable when it has written to it or read from it. It
is this map that will be merged with the global heap (∆) when the transaction commits.

• R is a set of written variables. Each time a transaction writes a new value to a transactional
variable this variable is stored in R.

• Eτ is used to store a backup of the transaction’s execution context. In case of failure it is
possible to restore the execution context and reexecute the entire transaction.

Transaction id τ ∈ U ::= {t1, t2, .., tn}
Transaction Status s ∈ S ::= {running, waiting, aborted, committed, stalled}

Ref Heap ∆ = r 7→ 〈[(i, v)], τ〉
Transaction T ::= 〈iτ , s, Ψτ , R, Eτ 〉
Transactions Ω = τ 7→ T
Local Heap Ψ = r 7→ V

Configuration Entity

A configuration K consists of a global heap of transactional variables (∆), a global write point
(i), a map of actor identifiers to in-boxes (Σ), a map of transaction identifiers to transactions
(Ω) and finally a map of actor identifiers to actor entities (Θ).

Configuration K ::= 〈∆, i, Σ, Ω, Θ〉

5.2.4 Auxiliary Operations
Below is a list of auxiliary operations that are used throughout the operational semantics. The
main purpose of them is to make the rules easier on the eyes.
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Operations on Actors

intransaction(〈_,_, τ,_, _〉) = true when τ 6= ⊥
intransaction(〈_,_, τ,_, _〉) = false otherwise

no-deps(〈D,_,_,_, _〉) = true when D = ∅
no-deps(〈D,_,_,_, _〉) = false otherwise

Operations on Transactions

Transaction Status Listed below are a few “getters” that simply return whether a transaction
is in a particular status.

τX(〈_, s, _, _, _〉) = true when s = committed
τX(〈_, s, _, _, _〉) = false otherwise
τ→(〈_, s, _, _, _〉) = true when s = running
τ→(〈_, s, _, _, _〉) = false otherwise
τ×(〈_, s, _, _, _〉) = true when s = aborted
τ×(〈_, s, _, _, _〉) = false otherwise
τ3(〈_, s, _, _, _〉) = true when s = waiting
τ3(〈_, s, _, _, _〉) = false otherwise
τ./(〈_, s, _, _, _〉) = true when s = stalled
τ./(〈_, s, _, _, _〉) = false otherwise

Operations on Messages

Reprocess When reprocess is applied on any given message and a set of transaction statuses
(e.g., {running, waiting}) the message will be marked as new if the status of the message is an
element of the given set of statusses. Otherwise the original message is returned.

reprocess(〈m, as, ar, z, [v], D〉, Z) = 〈m, as, ar, new, [v], D〉 whenz ∈ Z
reprocess(m, _) = m otherwise

Invalid determines if a given message is invalid. A message is invalid when it is carrying any
dependency that at this point in time has been aborted. Intuitively this means that the volatile
context has retried and thus might send the message again.

invalid(m) = true when m = 〈_, _, _, tx-processing, _, Dm〉 and ∃ τ ∈ Dm : τ×(τ)
invalid(m) = true when m = 〈_, _, _, processing, _, Dm〉 and ∃ τ ∈ Dm : τ×(τ)
invalid(m) = false otherwise

Inuse determines if a given message is “in use”. A message is in use if has been read from the
in-box by a receive block. If it has not been read it should have the new status. If it has already
been processed it should have the processed status.
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inuse(〈_, _, _, s, _, _〉) = true when s ∈ {tx-processing, processing}
inuse(m) = false otherwise

Mark takes a message and marks it according to the status of the actor. If the reading actor
is in a volatile context (i.e., in a transaction) the message should be marked as tx-processing.
If the actor is in a depending context (i.e., D 6= ∅) the message should be marked as processing.
Otherwise the message can be marked as processed immediately

mark(〈m, as, ar, z, [v], D〉) =


〈m, as, ar, tx-processing, [v], D〉 when intransaction(ar)
〈m, as, ar, processed, [v], D〉 when no-deps(ar) and D = ∅
〈m, as, ar, processing, [v], D〉 otherwise

Operations on In-boxes

Releaserefs takes a global heap of transactional variables and a set of written refs. Recall
that a transactional variable stores which transaction is currently running and has written to
it. When a transaction aborts or commits these values should be cleared in order for other
transaction to safely write to it. Releaserefs will create a new global heap ∆′ that removes all
transaction identifiers if and only if the transactional variable is ∈ R.

releaserefs(∆, R) = ∀x ∈ dom(∆) :


∆(x) when x /∈ R
〈l, ⊥〉 when x ∈ R

where 〈l, _〉 = ∆(x)

Resetin-box is a helper that will be used when an actor has to revert back to a previous
execution context due to either a failing transaction or a failing receive block. It does so by
iterating over the entire in-box. If a message is invalid it will be removed, otherwise it is marked
as new such that it can be received again.

resetInbox(m :: ms) = resetInbox(ms) when invalid(m)
resetInbox(m :: ms) = m′ :: resetInbox(ms) otherwise

where m′ = reprocess(m, {tx-processing, processing})
resetInbox([]) = []

Cleanin-box will take an in-box and remove each message that has been received up to that
point (i.e., marked as tx-processing or processing). The function will be used when an actor
finishes a receive block successfully, because at that point all messages have been processed and
can thus be removed.

cleanInbox(m :: ms) = cleanInbox (ms) when inuse(m)
cleanInbox(m :: ms) = m :: cleanInbox(ms) otherwise

cleanInbox([]) = []

Operations on Transactional Variables

Value Given the value of a transactional variable and a write point value will return the latest
value of the transactional variable that has a write point that is less than or equal to the given
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write point. Recall that a transactional variable can be read even though a transaction may have
committed to it after the reading transaction started.

value((v, i) :: l, iτ ) = v when iτ ≥ i
value((v, i) :: l, iτ ) = value(l, iτ ) otherwise
value([],_) = ⊥

Operations for receive

Equal is used to pattern match a receive case with a message. A receive case matches to a
given message if the message identifier is the same and when the number of parameters for that
receive case match the number of values that are passed along in the message.

equal(〈m1, _, _, _, [v], _〉, 〈m2, [x]〉) = true when len([v]) = len([x]) and m1 = m2
equal(_, _) = false otherwise

matchMsg takes a single receive case and an in-box. It will iterate over the entire in-box to
find a message that is equal to the case. If such a message is found it returns a triple containing
a new in-box, the marked message and the behavior defined in the case. The new in-box is
defined as the old in-box, except that the matching message is replaced by a marked one. The
third element of the triple is the behavior that was defined in the receive case.

matchMsg(〈m, [x])→ E〉, [ ]) = ⊥
matchMsg(〈m, [x])→ E〉, m′ :: ms) = (mark(m′) :: ms, mark(m′), E)

when equal(m′, 〈m, [x]〉)
matchMsg(case, m′ :: ms) = (m′ :: I′, m, E)

where (I′,m, E) = matchMsg(case, ms)
otherwise

matchCases takes a list of receive cases. The function will try to find a suitable message for
each case. If no suitable message is found for the first case it tries the second one and so forth.

matchCases([ ], I) = ⊥
matchCases(case :: cs, I) = matchMsg(case, I)

when matchMsg(case, I) 6= ⊥
matchCases(case :: cs, I) = matchCases(cs, I)

otherwise

5.3 Rules
5.3.1 Sending
Sending a message means that an actor creates a new message which is placed into the in-box of
the receiving actor. To this end we take the in-box of the receiving actor out of Σ and prepend
a new message to it. The dependencies in the message are the ∪ of the parent dependencies of
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the actor (D), the dependencies of a possible running transaction (Dτ ) and the possible running
transaction (τ). Notice that a newly constructed message is always flagged as new. Finally the
reduction context of the sending actor is reduced to nil.

[Send 1]

Ir = Σ(ar)
〈∆, ig, Σ, Ω, Θ[as 7→ 〈D,Dτ , τ, e�[! ar m [v]], Er〉]〉 −→

〈∆, ig, Σ[ar 7→ [〈m, as, ar, new, [v], D ∪ Dτ ∪ {τ}〉 :: Ir]], Ω, Θ[as 7→ 〈D,Dτ , τ, e�[nil], Er〉] 〉

5.3.2 Receiving
Receiving messages is one of the most important parts of this entire operational semantics. We
will discuss each case separately and in depth.

Because the following operational semantics allows one to send and receive messages in- and
outside of a transaction there are different steps to be taken in each scenario. The obstacle to
overcome is to identify when a message is sent or received in a volatile context. This means that
the flow of execution that sends or receives the message can be rolled back due to a transaction
that retries. In consequence the message send or receive has to be undone as well, including
subsequent sends or receives.

rcv 1 models the most basic scenario. An actor ar receives a message that holds no depen-
dencies. This means that once ar has started the receive block there is no scenario in which it is
forced to jump back to a previous execution point. The sending actor did not pass dependencies
along with the message meaning that the message was not sent in a transaction, nor was the
message sent from an actor that was depending on other actors. Hence, the message can be
immediately flagged as processed.

[rcv 1]

(I
′

r, 〈mm, as, ar, processed, v, ∅〉, Em) = matchCases([(m, [x])→ E ], Σ(ar))
〈∆, ig, Σ, Ω, Θ[ar 7→ 〈∅, ∅, ⊥, e�[receive [(m, [x])→ E ] ], ⊥〉]〉 −→

〈∆, ig, Σ[ar 7→ I
′

r], Ω, Θ[ar 7→ 〈∅, ∅, ⊥, e�[[[v]/[x]]Em], ⊥〉] 〉

rcv 2 is a rule that introduces dependencies. When an actor ar is executing a receive block
and has no other dependencies, nor is executing a transaction, ar is in a stable context. There
is nothing that can stop its control flow except an application-level exception. Upon reception of
a message that holds a dependency, ar becomes depending on the sending actor as or the actor
on which as is depending (dependency propagation). If ar has to roll back due to one of the
dependencies failing, there has to be a stable execution context to jump back to. This receive
rule is that exact point where it needs to happen. By taking the entire current execution context
(e�[receive (m, [x])→ E ]) and storing it in Er in ar we effectively save the current state of
execution. Finally the dependencies passed in the message will be the new value of D because it
is the only set of dependencies at this point and no ∪ is required.

A new statement is chained to the evaluation of the message body: end-rcv. This allows for
specific rules to apply when the receive block is evaluated.
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[rcv 2]

(I
′

r, 〈mm, as, ar, processing, v, Dm〉, Em) = matchCases([(m, [x])→ E ], Σ(ar))
〈∆, ig, Σ, Ω, Θ[ar 7→ 〈∅, ∅, ⊥, e�[receive [(m, [x])→ E ] ], ⊥〉]〉 −→

〈∆, ig, Σ[ar 7→ I
′

r], Ω, Θ[ar 7→ 〈Dm, ∅, ⊥, e�[[[v]/[x]]Em; end-rcv], e�[receive [(m, [x])→ E ] ]〉] 〉

rcv 3 applies when the receiving actor ar does not have any current transaction running but
the message carries dependencies (Dm). This means that the receiving context is not volatile,
but the sending context is. Intuitively this means that the message can become invalid and the
receiving actor might have to act accordingly. As a result we add the dependencies that are
present in the message (i.e., the transaction identifiers) to the already gathered dependencies, D.
The current evaluation context is reduced to the evaluation of the expression that was returned
by the match function, Em, in which we bind the unbound variables [x] to the payload of the
received message, [v]. Finally, the new in-box (Ir), which contains the marked message is updated
in the global in-box map.

[rcv 3]

(I
′

r, 〈mm, as, ar, processing, [v], Dm〉, Em) = matchCases((m, [x])→ E , Σ(ar))
〈∆, ig, Σ, Ω, Θ[ar 7→ 〈D, ∅, ⊥, e�[receive [(m, [x])→ E ] ], Er〉]〉 −→

〈∆, ig, Σ[ar 7→ I
′

r], Ω, Θ[ar 7→ 〈D ∪ Dm, ∅, ⊥, e�[[[v]/[x]]Em], Er〉] 〉

rcv 4 When a receiving actor ar is in a depending context but receives a message m from a
stable context, it is still possible for ar to jump back to a previous execution context. To make
sure that we can receive this message again it is marked as processing. If we were to remove
each message from the queue upon reception, ar would not be able to receive the message in
the second try. If at some point ar jumps back to a previous execution context the message can
be identified and remarked as new.

[rcv 4]

(I
′

r, 〈mm, as, ar, processing, v, ∅〉, Em) = matchCases([(m, [x])→ E ], Σ(ar))
〈∆, ig, Σ, Ω, Θ[ar 7→ 〈D, ∅, ⊥, e�[receive [(m, [x])→ E ] ], Er〉]〉 −→

〈∆, ig, Σ[ar 7→ I
′

r], Ω, Θ[ar 7→ 〈D, ∅, ⊥, e�[[[v]/[x]]Em], Er〉] 〉

rcv 5 models the same scenario as rcv 4, except in this case ar is in a volatile context. This
changes the point to where the flow of execution can jump back. In case ar has a dependency
that has become invalid by the end of the receive block it will jump back to Er. When the
transaction τ , that ar is executing, aborts, ar jumps back to the start of the transaction. This
means that all messages received since that point have to be marked for reprocessing. The actor
might have already received messages before the atomic block, thus we differentiate between
these two by flagging messages received inside an atomic block as tx-processing.

[rcv 5]
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(I
′

r, 〈mm, as, ar, tx-processing, v, Dm〉, Em) = matchCases([(m, [x])→ E ], Σ(ar))
〈∆, ig, Σ, Ω, Θ[ar 7→ 〈D,Dτ , τ, e�[receive [(m, [x])→ E ] ], Er〉]〉 −→

〈∆, ig, Σ[ar 7→ I
′

r], Ω, Θ[ar 7→ 〈D,Dτ ∪ Dm, τ, e�[[[v]/[x]]Em], Er〉] 〉

5.3.3 End Receive
Ending a receive block requires to make sure a few things are in order. First of all, we have to
make sure that all dependencies have been resolved (i.e., committed or waiting). Second of all
we need to clean up remaining dependencies by removing them from the actor entity.

Note that it is impossible to evaluate an end-rcv inside a transaction. According to rule rcv
2, end-rcv only is introduced when the receiver is in a stable context. If there were a transaction
running all dependencies would be stored in Dτ . Hence, evaluating end-rcv is a guarantee that
no transaction is running.

end-rcv 1 checks all the dependencies of the receive block in D for their status. If they are
all in a committed status this receive block can safely end because it will not be forced to retry
by its dependencies. It is safe to discard the backup of the execution context Er and the set of
dependencies, D. τX() only holds when a transaction is in the committed status. Note that
no transaction τ may be running in ar. This would imply that the entire receive is part of a
volatile context, τ and may be executed again. cleanInbox removes all messages from the in-
box that have been processed in this receive block (i.e., all messages marked tx-processingand
processing).

[end-rcv 1]

∀ τ ∈ D : τX(τ) I′ = cleanInbox(Σ(a))
〈∆, ig, Σ, Ω, Θ[a 7→ 〈D, ∅, ⊥, e�[end-rcv], Er〉]〉 −→
〈∆, ig, Σ[a 7→ I′], Ω, Θ[a 7→ 〈∅, ∅, ∅, ⊥, e�[nil], ⊥〉] 〉

end-rcv-fail 1 is the scenario the actor has reached the the end of a receive block and one of
the dependencies (τ ′) has aborted. Consequently, the currently running transaction, if there is
one, has to abort as well. This means that we might receive a message again due to τ ′ retrying.
Therefore, every message in our in-box that we processed during this receive block and possible
transaction (i.e., the messages marked processing or tx-processing) have to be processed
again. If a message contains dependencies that are invalid it has to be flagged as processed.
All other messages have to be reflagged as new such that our actor can reprocess them. Note
that this rule also applies when there is a transaction running. This would then be a stalled
transaction (rule commit 3), hence it has not yet been committed. To make it known to all other
actors we mark the current transaction as aborted.

[end-rcv-fail 1]

∃ τ ∈ D : τ×(τ) I′ = resetInbox(Σ(a)) Ω′ = Ω[τ 7→ 〈τ, iτ , aborted, Ψτ , R, Ec〉],
〈∆, ig, Σ, Ω, Θ[a 7→ 〈D,Dτ , τ, e�[end-rcv], Er〉]〉 −→

〈∆, ig, Σ[a 7→ I′], Ω, Θ[a 7→ 〈∅, ∅, ⊥, Er, ⊥〉]〉
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end-rcv 2 applies when there is a stalled transaction running (τ). This happens when an
atomic block was executing in a depending context. (i.e., D 6= ∅). The current receive block can
only finalize when these transaction dependencies are all resolved as well. If there is a transaction
τ running we are sure that it must be in the stalled status. Recall that end-rcv is only added
to the evaluation context if the context is stable. Hence, end-rcv 2 is evaluated at the end of
the receive block that introduced the first dependency. If τ would not be in the stalled status
it would mean that it did not try to commit yet and thus encloses this receive. But then all
dependencies would reside in Dτ and no end-rcv would have been introduced.

When this rule applies we first change the status of the transaction to waiting. This allows
for the commit 1 and commit 4 rules to apply. This allows all transactions in the dependency
group (Dτ ) to commit safely. When this happens τ will be cleared from the actor, subsequently
allowing the regular end-rcv rules to apply. Note that a check is made to ensure that all
dependencies in D are resolved. The transaction can only and only then commit when these
dependencies have been met and thus the receive block is sure to not abort. Note that the
dependencies in D have to be in committed or waiting status otherwise it would be possible to
commit τ and in the mean while any of the dependencies in D could abort and thus abort the
enclosing receive block as well, making it impossible for τ to revert its changes from the global
heap.

[end-rcv 2]

∀τ ′ ∈ Dτ : τ3(τ ′) ∨ τX(τ ′) Ω′ = Ω[τ → 〈τ, iτ , waiting, Ψτ , R, Ec〉],
〈∆, ig, Σ, Ω, Θ[a 7→ 〈D,Dτ , τ, e�[end-rcv], Er〉]〉 −→
〈∆, ig, Σ, Ω′, Θ[a 7→ 〈D,Dτ , τ, e�[end-atomic], ⊥〉]〉

5.3.4 Transactions
The following rules describe the actions to take when a new transaction is started. To do this
properly a few things have to be taken into account: whether the transaction is started inside a
receive block with or without dependencies and if there is already a transaction running or not.

atomic 1 starts a new transaction. Since there is no transaction running we have to create a
new transaction entity and put it in the global map. A new identifier is created (τ fresh) and a
new transaction is registered in Ω, the global transaction map. The transaction gets a new write
point which is the value of the current global write point, ig, a flag that marks it as running and
a backup of the entire execution context. The latter is to make sure we can retry the transaction
in case of a collision or a failed dependency.

[atomic 1]

τ fresh Ω
′

= Ω[τ 7→ 〈ig, running, ∅, ∅, e�[atomic E end-atomic]〉]
〈∆, ig, Σ, Ω, Θ[a 7→ 〈D, ∅, ⊥, e�[atomic E end-atomic], Er〉]〉 −→

〈∆, ig, Σ, Ω
′
,Θ[a 7→ 〈D, ∅, τ, e�[E ; end-atomic], Er〉]〉

atomic 2 In case that there is already a transaction running on the current thread the atomic
block is as simple as just running the expression in E .
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[atomic 2]

τ 6= ⊥
〈∆, ig, Σ, Ω, Θ[a 7→ 〈D,Dτ , τ, e�[atomic E end-atomic], Er〉]〉 −→

〈∆, ig, Σ, Ω,Θ[a 7→ 〈D,Dτ , τ, e�[E ], Er〉]〉

atomic 3 When commit 2 puts a transaction in the stalled status it is still possible for the
programmer to start a new transaction further down in the expression. In case there is a stalled
transaction τ present, τ becomes running again, instead of creating a new transaction, although
the programmer would expect it to be two separate transactions. Notice that the backup of the
execution context (Er) is not overwritten. If the transaction fails the entire transaction should
be retried, ergo, jump back to the first retry point of the transaction.

[atomic 3]

Ω
′

= Ω[τ 7→ 〈τ, iτ , running, Ψτ , R, Ec〉]
〈∆, ig, Σ, Ω[τ 7→ 〈τ, iτ , stalled, Ψτ , R, Ec〉],Θ[a 7→ 〈D,Dτ , τ, e�[atomic E end-atomic], Er〉]〉 −→

〈∆, ig, Σ, Ω
′
,Θ[a 7→ 〈D,Dτ , τ, e�[E ], Er〉]〉

5.3.5 Transactional Variables
refset 1 facilitates writing to a transactional variable r. This can only be done inside an atomic
block. First r is retrieved from the global heap. If a transactional variable is clear to be written
to ⊥ should be in the entity its owner and the first entry in the history of r should have a write
point that is either equal or less than iτ . Finally, there should not be a value for r present in
the in-transaction value store Ψτ . If all these requirements are met, the global heap is updated
by setting τ as the owner of r, the newly set value v is stored in the in-transaction value store,
r is added to the bag of written transactional variables R and finally the evaluation context is
reduced to the newly set value.

[refset 1]

τ 6= ⊥ iτ ≥ i Ψτ (r) = ⊥ ∆(r) = 〈(v′, i) :: l, ⊥〉
Ω′ = Ω[τ 7→ 〈τ, iτ , running, Ψτ [r 7→ v], R ∪ {r}, Ec〉] ∆′ = ∆[r 7→ 〈[(v′, i) :: l, τ ]〉
〈∆, ig, Σ, Ω[τ 7→ 〈τ, iτ , running, Ψτ , R, Ec〉],Θ[a 7→ 〈D,Dτ , τ, e�[set! r v], Er〉]〉

−→ 〈∆′, ig, Σ, Ω′, Θ[a 7→ 〈D,Dτ , τ, e�[v], Er〉]〉

refset 2 handles the case where the current transaction has already written a value to the
transactional variable r. The previously written value, vl is retrieved from the local value store
Ψτ . At this point all that is left to do is update the new value in the local value store and reduce
the reduction context to the newly set value.

[refset 2]

Ψτ (r) = vl ∆(r) = 〈(v′, i) :: l, τ〉 iτ ≥ i,
〈∆, ig, Σ, Ω[τ 7→ 〈τ, iτ , running, Ψτ , R, Ec〉],Θ[a 7→ 〈D,Dτ , τ, e�[set! r v], Er〉]〉

−→
〈∆, ig, Σ, Ω[τ 7→ 〈τ, iτ , running, Ψτ [r 7→ v], R, Ec〉],Θ[a 7→ 〈D,Dτ , τ, e�[v], Er〉]〉
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refset-fail 1 In case that a transaction τ tries to write to a transactional variable r which has
been written to in the global heap after τ started (i.e., a transaction committed changes to it)
τ has to abort in order to maintain a consistent snapshot of the global state. τ is aborted and
the current reduction context is replaced with a backup of the one stored inside Ec. The final
thing to do is clean the in-box. Inside of τ messages may have been received. To reprocess these
in the next try of τ we reprocess( ) all messages that are currently flagged as tx-processing
by flagging them as new again.

[refset-fail 1]

∆(r) = 〈(v′, i) :: l, _〉 iτ < i Ω′ = Ω[τ 7→ 〈τ, iτ , aborted, Ψτ , R, Ec〉]
Ia = {reprocess(m, {tx-processing}) | m ∈ Σ(a)}

〈∆, ig, Σ, Ω, Θ[a 7→ 〈D,Dτ , τ, e�[set! r v], Er〉]〉 −→
〈∆, ig, Σ[a 7→ Ia], Ω′, Θ[a 7→ 〈D, ∅, ⊥, Ec, Er〉]〉

refset-fail 2 applies when a transaction tries to write to transactional variable r which is
owned by another transaction τ ′. As a result the transaction can not write to this variable.
Subsequently the transaction has to abort.

[refset-fail 2]

∆(r) = 〈_, τ ′〉 τ 6= τ ′

Ia = {reprocess(m, {tx-processing}) | m ∈ Σ(a)} Ω′ = Ω[τ 7→ 〈τ, iτ , aborted, Ψτ , R, Ec〉]
〈∆, ig, Σ, Ω, Θ[a 7→ 〈D,Dτ , τ, e�[set! r v], Er〉]〉 −→

〈∆, ig, Σ[a 7→ Ia], Ω′, Θ[a 7→ 〈D, ∅, ⊥, Ec, Er〉]〉

refread 1 Reading a transactional variable that has been read before, or been written to before
is as simple as reading the associated value from the in-transaction store Ψτ .

[refread 1]

Ψτ (r) = v

〈∆, ig, Σ, Ω[τ 7→ 〈τ, iτ , running, Ψτ , R, Ec〉],Θ[a 7→ 〈D,Dτ , τ, e�[read r], Er〉]〉 −→
〈∆, ig, Σ, Ω, Θ[a 7→ 〈D,Dτ , τ, e�[v], Er〉]〉

refread 2 In case there is no in-transaction value for the transactional variable r it is required
to fetch it from the global store. Since r might have been written to since our transaction τ
started it is needed to get the value it had before our transaction started. Given the history of
r and our starting point, value() will return the value in that history which was present just
before our transaction started. Finally, we store that value in our in-transaction values.

[refread 2]

Ψτ (r) = ⊥ v = value(lv, i) ∆(r) = 〈lv,_〉 v 6= ⊥
〈∆, ig, Σ, Ω[τ 7→ 〈τ, iτ , running, Ψτ , R, Ec〉],Θ[a 7→ 〈D,Dτ , τ, e�[read r], Er〉]〉 −→

〈∆, ig, Σ, Ω, Θ[a 7→ 〈D,Dτ , τ, e�[v], Er〉]〉
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refread 3 allows for a transactional variable r to be read outside of a transaction. r is looked
up in the global heap and the latest value is returned.

[refread 3]

∆(r) = 〈(v, i) :: lh, _〉
〈∆, ig, Σ, Ω,Θ[a 7→ 〈D, ∅, ⊥, e�[read r], Er〉]〉 −→ 〈∆, ig, Σ, Ω, Θ[a 7→ 〈D, ∅, ⊥, e�[v], Er〉]〉

5.3.6 Committing
commit 1 applies in two cases.

If an actor a has no dependencies built up during the transaction τ (i.e., Dτ = ∅) and
the enclosing receive block is a stable context τ can safely commit because it has no other
transactions to account to. If this is the case τ is in the running status, D = Dτ = ∅, and
s ∈ {running, waiting}. Consequently, τ is changed to the committed status, the heap (∆) is
updated with the in-transaction values (Ψτ ) and the evaluation context is reduced to nil.

In case Dτ is not empty, τ has received one or more messages during execution which resulted in
a dependency on an arbitrary actor. Ergo, τ can only commit when all these dependencies are
in the committed or waiting status. If all dependencies are in the waiting status τ can safely
commit. This is guaranteed by the ∀τ ′ ∈ Dτ : τ3(τ ′)∨τX(τ ′) predicate. Consequently a cascade
apply of this rule will make sure all dependencies can commit as well.

[commit 1]

s ∈ {running, waiting} ∀τ ′ ∈ Dτ : τ3(τ ′) ∨ τX(τ ′)
merge(∆, Ψτ , R, iτ) Ω′ = Ω[τ 7→ 〈τ, iτ , committed, Ψτ , R, Ec〉],

〈∆, ig, Σ, Ω[τ 7→ 〈τ, iτ , s, Ψτ , R, Ec〉],Θ[a 7→ 〈∅,Dτ , τ, e�[end-atomic], ⊥〉]〉 −→
〈∆, ig + 1, Σ, Ω′, Θ[a 7→ 〈∅, ∅, ⊥, e�[nil], ⊥〉]〉

commit 2 is applied when a transaction τ is running but has a dependency in Dτ that is still
running and a possible enclosing receive block has no dependencies (i.e., D = ∅). To make sure
that all transactions commit in group τ has to wait for its dependencies to finish (i.e., go into
the waiting or committed status). To do this it goes into the waiting status itself and the
reduction context remains end-atomic.

[commit 2]

∃ τ ′ ∈ Dτ : τ→(τ ′) Ω′ = Ω[τ 7→ 〈τ, iτ , waiting, Ψτ , R, Ec〉],
〈∆, ig, Σ, Ω[τ 7→ 〈τ, iτ , running, Ψτ , R, Ec〉],Θ[a 7→ 〈∅,Dτ , τ, e�[end-atomic], ⊥〉]〉

−→ 〈∆, ig, Σ, Ω′, Θ[a 7→ 〈∅,Dτ , τ, e�[end-atomic], ⊥〉]〉

commit 3 When a transaction τ is running but there are dependencies in the enclosing receive
block (i.e., D 6= ∅), τ is not allowed to commit. The values can not be written to the global
heap just yet because the enclosing receive is a depending context and can still be reverted. As
a result it is not possible to commit yet. Consequently, we want every transaction that depends
on this transaction to wait before committing as well. Thus, we want to refrain from committing
to the global heap until the end of the receive block. At that point the dependencies in D and
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Dτ can be safely processed. Thus, the transaction will go to the stalled status. Intuitively this
means that the transaction is not yet committed, yet not running. The reduction context will
be reduced to nil in order to continue with the rest of the receive block. The only thing we can
check is if there are any failed dependencies in Dτ at this point. If so, it would be perfectly safe
to restart the current transaction.

[commit 3]

D 6= ∅ @ τ ∈ Dτ : τ×(τ) Ω′ = Ω[τ 7→ 〈τ, iτ , stalled, Ψτ , R, Ec〉],
〈∆, ig, Σ, Ω[τ 7→ 〈τ, iτ , running, Ψτ , R, Ec〉],Θ[a 7→ 〈D,Dτ , τ, e�[end-atomic], Er〉]〉

−→ 〈∆, ig, Σ, Ω′, Θ[a 7→ 〈D,Dτ , τ, e�[nil], Er〉]〉

commit 4 is the rule that is needed to commit a previously stalled transaction τ . This happens
when an atomic block is run inside a receive block that is a depending context. τ was not allowed
to commit at the evaluation of end-atomic and was put into a stalled status by commit 3
and has afterwards been reverted back to the waiting status by end-rcv 2 at the end of the
enclosing receive which introduced the dependencies in D. Since τ has to be in the running
status in order for commit 3 to apply, checking that τ is in the waiting status, together with a
the predicate that D is not empty is enough to ensure that this rule only applies in this particular
case. If all the dependencies in Dτ are in a waiting or committed status it is safe for τ to commit
as well. We merge with the global heap and change the transaction to the committed status and
insert end-rcv in the evaluation context. The latter allows for end-rcv 1 to apply. Recall that
all dependencies in D were checked before the transaction was committed. This is impossible to
change in the meanwhile so we can safely assume that end rcv 1 will apply.

[commit 4]

D 6= ∅ ∀τ ′ ∈ Dτ : τX(τ ′) ∨ τ3(τ ′) merge(∆, Ψτ , R, iτ)
Ω′ = Ω[τ 7→ 〈τ, iτ , committed, Ψτ , R, Ec〉]

〈∆, ig, Σ, Ω[τ 7→ 〈τ, iτ , waiting, Ψτ , R, Ec〉],Θ[a 7→ 〈D,Dτ , τ, e�[end-atomic], Er〉]〉
−→ 〈∆, ig, Σ, Ω, Θ[a 7→ 〈D, ∅, ⊥, e�[end-rcv], Er〉]〉

commit-fail 1 When a transaction τ reaches the end of its atomic block and there are trans-
actions in Dτ that have aborted in the mean while, τ has to restart as well, regardless if there are
dependencies in D or not. The reduction context is replaced with the evaluation context stored
in τ , Ec. The transaction is changed to the aborted status and transactional dependencies are
cleared. Finally we have to reset the in-box. This means flagging all messages that are currently
flagged as tx-processing as new. τ may hold zero or more transactional variables in R and
thus these have to be released. This is facilitated by releaserefs.

[commit-fail 1]

∃ τ ′ ∈ Dτ : τ×(τ ′) I′ = {reprocess(m, {tx-processing}) | m ∈ Σ(a)}
Ω′ = Ω[τ 7→ 〈τ, iτ , aborted, Ψτ , R, Ec〉] ∆′g = releaserefs(∆, R)

〈∆, ig, Σ[a 7→ I], Ω[τ 7→ 〈τ, iτ , s, Ψτ , R, Ec〉],Θ[a 7→ 〈D,Dτ , τ, e�[end-atomic], Er〉]〉
−→ 〈∆′g, ig, Σ[a 7→ I′], Ω′, Θ[a 7→ 〈D, ∅, ⊥, Ec, Er〉]〉



6
Implementation

In this chapter we will discuss the implementation strategies chosen for the actor library and
STM library. We will discuss how each library works in detail. Next we will discuss which
modifications had to be applied to each library in order to combine them and apply the behavior
defined in the formal semantics.

6.1 Multi-version Concurrency Control STM
Multi-version Concurrency Control (MVCC) is a concurrency control mechanism that stems from
database systems (Bernstein & Goodman, 1981). In database systems there is also a notion of
transactions. Two applications can execute queries on the same table that might introduce
conflicting changes. For example, one program updating the pay grade of a list of employees
and another program reading out the pay grade to calculate their paycheck. If updating a list
of records takes a long time it would infeasible to lock the entire table for this transaction (i.e.,
forcing sequential reads and writes). Bernstein and Goodman (1981) address this issue with
MVCC. We will explain MVCC in the context of STM, specifically the implementation that is
present in Clojure, and by extension how the meta-circular implementation (Van Cutsem, 2015)
works.

In Clojure a transaction is delimited by putting a list of expressions inside an dosync block.
A transactional variable is created by wrapping any data structure into a ref. A transactional
variable has four metadata fields. An identifier, a lock, a history and an acquired-by field.

• Identifier This is a unique identifier for a transactional variable. Every call to ref creates
a new globally unique identifier.

• Lock contains a lock that transactions can acquire. This is needed to make changes to a
ref atomically.

• History The history of a transaction holds a list of all its previous values and the value of
the global write point at the time the transaction that wrote it started. Upon creation of
a ref with value val the history contains a single tuple {val, global write point}.

65
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• Acquired-by holds a reference to the transaction that last successfully acquired the trans-
actional variable. This transaction may either be running or committed.

A transaction is represented by a data structure that has five metadata fields.

• read-point holds a copy of the global write point that is taken when the transaction
initialized.

• In transaction Values is a mapping of ref s to values. Each time a transaction writes a
value to a ref it caches the new value in this map.

• Written refs is a set of transactional variable references. Each time a transactional
variable is written to a pointer to it is stored in this list. This allows the transaction to
keep track of which variables it has written to.

• Commutes This holds a mapping of transactional variables to lists of functions. Each
entry in the list represents a function that was commuted on this transactional variable.
Commuting will be explained in detail below.

• Ensures Ensures contains a list of transactional variables that have been ensured. Ensuring
a ref explicitly means that the transaction can only commit when at the end of the
transaction none of the ensured refs have been written to by another transaction.

• Status is a field that will reflect the status of the transaction. This can either be running,
committing, retrying or committed.

Clojure provides four fundamental constructs regarding STM.

• Dosync takes as a parameter a series of expressions which constitute the transaction.

• Ref-set is a function that takes a ref and a value and updates the value of the given ref.

• Alter is syntactic sugar for ref-set. Instead of a value, alter takes as a parameter a
function. This function is then applied to the current value of the ref and the result will
become the new value of the ref.

• @ is a macro that reads the newest value of a ref from global memory (or in-transaction
values if present). It is also the only construct relating to STM that can be used outside
of a dosync block.

Clojure STM keeps a global write point for the transaction runtime. The write point is a
means to keep track of when a transaction started. Each time a transaction starts it makes a
copy of the value of the current global write point by value. When it successfully commits, each
transactional variable that it has written a new value to will contain a new tuple at the beginning
of its history: {value, writepoint}. This allows transactions to determine at what point in
time a transactional variable was last written to, relative to their start point.

A transaction starts by initializing in-transaction values, written refs, commutes and ensures
to empty. The global write point is copied and the transaction is marked as running. Next the
body of the dosync block is executed. If a transaction was already running on the current thread
no new transaction is created. The transaction simply merges with the current one. Hence, if
the nested transaction were to fail, the enclosing transaction fails as well.
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Committing a transaction is the protocol that determines how changes are committed to the
global heap. To make sure that a transaction does not create an inconsistent state in the global
memory all refs are locked during the commit phase. As a consequence no other transaction
can commit to refs that have been written to by this transaction at this point. It can continue
computing but it can not read or write any values to the transactional variables. However, the
commit phase holds these locks for a short period of time. As the first step in the commit phase
the transaction will change its own status to committing, so that other transactions are aware of
this.

Next, the written and ensured refs are checked. Each ref that had a value written to it
may not have changed during the run of the transaction, otherwise one might reason that the
newly written values are based on a stale ref value. Hence, if a written ref has been committed
to and subsequently the last entry in its history contains a write point that is bigger than the
start point of the transaction the transaction must retry. An ensured ref allows for this semantic
to be applied to refs which have only been read from. In a regular scenario a read ref can be
committed to in the mean while by another transaction. Since each ref has a history of values
the runtime will just lookup the value the read ref had at the time the transaction started.
This way a transaction does not have to abort every time a read-only ref has been committed to
during the transaction runtime. However, if one ensures a ref in a transaction the transaction
will only succeed if it has not been written to since the start of the transaction. This is also
referred to as a dummy write because ensure has the same semantic as reading and writing the
value from a ref.

All the commuted operations are re-applied when the transaction commits. commute is used
by calling it with a ref and a function as parameters. The function is simply applied to the
transactional variable. However, the semantics in a transaction differ from simply applying a
function to a ref with alter.

When two functions are combined using function composition and for those two functions
the composition is commutative, commute can be used without changing the result as if alter
were used. For example, inc, which increments an integer by one and dec, which decrements an
integer by one make function composition commutative. Applying inc after dec or vice versa
has no effect on the final result.

Listing 6.1 and Listing 6.2 both show a scenario where two threads each execute a transaction.
The first case, using alter, will cause one of either transactions to retry and subsequently
“Transaction start” will be printed more than twice. If one transaction has already incremented
r the second transaction will fail if the first one is still running because it will notice that the
ref has been written to. Hence, it will retry hoping that the ref will not be modified during
the second attempt.

In the second case both transactions will succeed after the first attempt. The reason is
that commute functions are executed during the commit phase using the latest values from the
global heap whilst locking the ref (recall that the commit protocol holds locks for all refs).
During the transaction itself commuted values are kept in the in-transaction values. As such,
consecutive reads of that ref will use the updated value from the in-transaction values. One of
both transaction will initiate the commit protocol first. That transaction will hold the locks and
update the values to the global heap. As a consequence the commutes of the second thread will
be applied to the updated values from the global heap.

Finally while still holding all the locks, the transaction will update the history of each ref.
Each ref has a new tuple prepended to its history log that holds the new value and the starting
point of the transaction. And at last the transaction releases all the locks.
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Listing 6.1: Two transactions using alter

1 (dosync
2 (println "Transaction start")
3 (alter r inc))

1 (dosync
2 (println "Transaction start")
3 (alter r dec))

Listing 6.2: Two transactions using commute

1 (dosync
2 (println "Transaction start")
3 (commute r inc))

1 (dosync
2 (println "Transaction start")
3 (commute r inc))

6.2 Actor library
The actor library that was we wrote for this thesis is a bare minimum library to allow experi-
mentation. It allows for creation of actors, message sending and message payloads.

6.2.1 Syntax
An actor is created by calling the create-actor function. It expects a function that defines the
initial behavior of the actor, a name and possible initial values for the state of the actor. An
example of a simple actor is given in Listing 6.3. The name of the actor is :counter-actor (line
3), the function is inlined as second argument and the initial value of the counter is zero (line
11).

The example depicts the syntax of a receive statement (line 5 to 9). A receive block contains
one or more receive clauses. This example depicts two receive clauses inside a single receive block.
The receive block is executed for a message :increment that has one variable as its payload, or a
message :increment wihtout payload. delta in this case specifies how much the counter should
be incremented. The receive statement will block until a message has arrived that matches one
of the clauses. After that the receive statement is evaluated to the value of the last statement of
the matching clause. In this case that is the new counter value (line 7 and 9).
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Listing 6.3: Actor creation
1 ;; Counter actor
2 (create-actor
3 :counter-actor
4 (fn [counter]
5 (let [new (receive
6 ([:increment]
7 (inc counter ))
8 ([:increment delta]
9 (+ counter delta )))]

10 (recur new ))))
11 0)

Sending a message is done by using the ! function. The function takes as first argument
the name of an actor, secondly the message. The last optional argument is a Clojure map that
maps names onto values. Listing 6.4 depicts a simple message send to the counter actor shown
in Listing 6.3. The last argument shown is the delta parameter for the second receive clause.
The name of the value in the map should match the name in the receive clause of the actor. In
this case delta.

Listing 6.4: Sending a message
1 (! :counter-actor :increment {:delta 10})

6.2.2 Details
Actors The implementation of this actor library primarily relies on threads to model actors.
Each actor in the system is represented by a future that is running in the Clojure agent pool.
This means that the fairness of this implementation is the responsability of the Java virtual
machine. Each time an actor is created its name is stored in a global map that is accessible to
all other actors. The name of the actor is mapped to its in-box instance. When an actor does
not make any recursive calls or calls to other functions the process stops and the actor is simply
removed from the global actor map and all its data is garbage collected.

Sending To send a message to any actor the programmer can use the ! macro. Behind the
scenes this macro takes a reference to the receving actor’s in-box and inserts a map into the
queue. Internallly a message is represented as a map that contains the actual message keyword,
the possible empty map of arguments passed along with this message and a globally unique
identifier for each sent message. Each message is appended to the back of the in-box of the
actor.

Receiving To receive a message the actor can use the receive macro. The receive macro
expands to a complex statement. First the receive statement will create a list of filters that
match any of the messages in the receive block. Two messages are equal if they have the same
keyword, e.g., :increment, and the arguments they expect match the number of values that the
message contains. The in-box is then iterated with this map of filters. The first message in the
queue that matches any of the filters is returned from the in-box. The arguments passed to this
message are then bound to the free variables in the receive clause. Finally the receive clause is
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executed and the entire receive expression is reduced to the value of the last expression in the
executed receive body.

6.3 Combination of Both Models
The approach taken to accommodate both libraries was by means of hooks. Most rules defined
in the formal semantics applied some form of predicates on a current state of an actor in order
to decide the course of action. As such, it was possible to insert hooks in the right places in
the runtime of both libraries and continue based on the result of the hook handler. We will now
discuss where each hook was inserted in both implementations and the defined behavior for each
of them. In addition we will discuss the other changes that had to be made to each library.

6.3.1 STM
Pre-commit To manipulate the way a transaction commits it was required to hook into the
runtime before the transaction actually initiated the commit protocol (pre-commit-hook). List-
ing 6.5 shows the definition of the pre-commit-hook function. Before the transaction commits
it is required to check the context of the transaction. The runtime needs to determine if the
transaction is running in a stable or depending context and if it has built up dependencies during
its execution. If the former is the case (line 13) the transaction can commit without changes in
the behavior. However, if the transaction is executed in a depending context and that context
has dependencies the transaction has to be stalled (line 19). If the transaction is running in a
stable context but has built up dependencies during its execution the transaction has to wait
for these dependencies (line 23). This will result in either all dependencies committing or one
or more dependencies failing (lines 26 and 27). The hook will then return the course of action
the STM runtime should take. Commit, retry or stall the transaction (line 14, 17, 21 and 26).
The former case will let the STM runtime continue as usual. If the transaction should retry the
runtime issues an exception such that the transaction retries. In the latter case the committing
protocol of the transaction is skipped. The transaction immediatly returns without committing
to the global heap.
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Listing 6.5: The behavior executed before each transaction commits.
1 (defn pre-commit-hook
2 [tx-atom]
3 (let [tx-id (:id @*current-transaction*)
4 status? ((comp deref :status deref) *current-transaction*)
5 tx-deps *tx-dependencies*
6 stable? (empty? *dependencies*)
7

8 safe? (empty?
9 (filter #(not (some (set [:COMMITTED :WAITING ])

10 ((comp list deref :status deref) %)))
11 *tx-dependencies*))]
12 (cond
13 ;; Regular tx
14 (and (empty? tx-deps) (empty? *dependencies*))
15 :commit
16 ;; Commit 1
17 (and stable? safe? (or (= status? :RUNNING) (= status? :WAITING )))
18 :commit
19 ;; Commit 3
20 (not stable ?)
21 (do (reset! (:status @tx-atom) :STALLED)
22 :stalled)
23 (and tx-deps (not safe ?))
24 (do (reset! (:status @*current-transaction*) :WAITING)
25 (let [all-committed? (wait-for-deps-tx )]
26 (if all-committed?
27 :commit
28 nil)))
29 :else.
30 nil )))

Creating transactions The second change that has to be applied to the default STM runtime
is the point of creating a transaction. In the regular STM runtime a transaction is either running
or not at the point a new transaction is started. In case of the latter the STM runtime creates a
new transaction. In case of the former the runtime simply executes the body of the transaction as
part of the currently running transaction. In the modified implementation there is the possibility
that the current transaction is in the stalled status. If that is the case the transaction has to be
put back into the running status before executing the function. Afterwards the transaction is
put in to the stalled state again.

Before retry hook A final minor hook is the before-retry-hook which is depicted in
Listing 6.6. If a transaction has to retry the in-box has to be cleared of all processed mes-
sages. The runtime will iterate over the entire in-box and mark each message that is flagged as
tx-processing as new again (line 5).

Listing 6.6: The behavior executed before each transaction is retried.
1 (defn before-retry-hook
2 []
3 ;; Reprocess all the messages that are marked :tx-processing
4 (when *inbox*
5 (.map *inbox* #( reprocess! % [:tx-processing ]))))
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6.3.2 Actor model
Pre process message hook Listing 6.7 depicts the pre-handle-message-hook function.
This function is called each time a message has been read from the in-box of an actor. When an
actor reads a message from the in-box the runtime needs to check if there are already dependencies
present in the actor. If this is not the case the actor becomes dependent by processing that
message (lines 10-12). The runtime will then continue processing the receive body by setting a
flag that indicates that that receive block is the block that introduced dependencies (line 11).
Finally the dependency in the message is added to the set of dependencies of the actor (line
12). If the actor is already in a depending state the dependency is added to the set of actor
dependencies (line 15). The final is case is when the actor is running a transaction. In that case
the actor will have to add the dependency to the transaction dependency set (line 7-8).

Listing 6.7: Behavior executed before each receive body is executed
1 (defn pre-handle-message-hook
2 [message]
3 (let [msg-dependencies (:deps message )]
4 (cond
5 ;; The actor is running a transaction
6 *current-transaction*
7 (set! *tx-dependencies*
8 (set (into *tx-dependencies* msg-dependencies )))
9 ;; Actor is in a stable state

10 (and (empty? *dependencies*) (not (empty? msg-dependencies )))
11 (do (set! *jump-back* true)
12 (set! *dependencies* (set (into current-deps msg-dependencies ))))
13 ;; Actor is in a depending state
14 (not (empty? msg-dependencies ))
15 (set! *dependencies* (set (into *dependencies* msg-dependencies ))))))

Post receive When an actor has finished a receive block the runtime needs to check the
dependencies for failure. Listing 6.8 depicts the definition of this behavior. However, this only
needs to happen after the receive block that introduced the first dependency, i.e., the receive
block that has the *jump-back* flag set to true (line 3).

If this is the case the runtime will wait for all the dependencies to either resolve, i.e., commit,
or for one of the dependencies to fail (line 4). According to the result of that function the runtime
will either execute behavior specific to a failure or a succes (lines 6-7). In both cases the actor’s
dependencies are cleared. In case of failure the receive block is simply executed again.

Listing 6.8: Behavior executed after every receive body
1 (defn post-receive-hook
2 []
3 (when *jump-back*
4 (let [success? (wait-for-deps )]
5 (if-not success?
6 (end-receive-fail)
7 (do (when (not (nil? *current-transaction*))
8 (reset! (:status @*current-transaction*) :WAITING ))
9 (end-receive ))))

10 :else
11 :ok))
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6.4 Caveats
Tail Recursion The current implementation has some limitations. For one, the implementa-
tion does not allow proper tailrecursion. However, this is a limitation of the Java virtual machine
and by extension Clojure. This means that if an actor calls a another function in tail position the
actor will build up stack. However, if the actor wants to do a recursive call the recur keyword,
provided by Clojure, guarentees that no stack will be built.

Exception Handling The implementation given here does not handle application level ex-
ceptions. If any actor throws any unchecked exception the program will be in an inconsistent
state. Any actor that is depending on an actor that has thrown an unchecked application level
exception will still depend on that actor. However, the failed actor does not do any cleanup or
deconstruction before failing so the system might reside in a deadlock.

6.5 Conclusion
This chapter discussed the actor library and the STM library in detail. The proof of concept
implementation adheres to all the rules that are defined in the formal semantics given in chapter 5.
However, not all semantic properties discussed in chapter 2 are maintained due to limitations of
the implementation platform.



7
Evaluation

In this chapter we will discuss a small program that will serve as a real-world evaluation of our
library. The program is a small ant colony simulation first written by Rich Hickey, the inventor
of Clojure. Next we will discuss the semantic properties of the combination of both models.
More specifically, which semantics are still guaranteed and which ones have been violated.

7.1 Ant Simulation
The ant simulation program is a classic program that demonstrates the power of Clojure con-
currency models. The program simulates an ant colony in which the ants constantly look for
food and return it to their home base. The world the ants live in is represented by a matrix of
transactional variables. The ants are modelled by agents and move around the grid looking for
food. Figure 7.1 shows a screenshot of the running program.

The red cells on the screen represent food. The blue square represents the home base of the
ants. The slant lines represent ants and the direction they are walking. If an ant carries food it
is drawn as a red line. If the ant is looking for food it is drawn as a black line.

An ant will walk from its home on the grid and forage for food. Each time the ant walks
on a cell in the grid it leaves an amount of pheromones on that cell. When more ants walk
over the same cell the cell contains more pheromones. As such, these cells become darker green.
The pheromones are used to allow other ants to find a shorter path to food. An ant walks in a
random direction each time it takes a step. If the ant can take a step in a direction which has
pheromones it will take the route with the strongest pheromone smell until it reaches food or
its home base. As such, after a while the ants should all be walking on the same straight line
between their home base and a food source and thus all walk the shortest path.

7.1.1 Implementation
World The world the ants walk around in is represented by a matrix of transactional variables.
Each cell contains the amount of pheromones present and the amount of food that is present.
A few cells of the entire grid have food and all the other cells have a food amount of zero. A

74



CHAPTER 7. EVALUATION 75

Figure 7.1: Screenshot of the ant simulation program

cell is represented by a clojure map that contains a variable number of key-value pairs. If the
cell contains food the map will have an entry :food with an integer representing the amount of
food. If there is an ant present on that cell it will have a field :ant with a map containing the
direction the ant is going and the amount of food it is carrying as value. Finally, if the cell is
part of the home base of the ant it will have a key :home with value true. An example of the
value of a cell is given in Listing 7.2.

Listing 7.2: Sample value of a cell in the ant world.
1 {:home true :food 0 :pher 0 :ant {:dir [0 1] :food true}}

Ants Ants are represented by agents. The value of the agent is the location of the ant on
the grid represented using the Cartesian coordinate system. To make an ant move the behave
function is sent off to the agent. This function is then applied to the current position of the ant,
which is the value of the agent.

The behave function starts a transaction immediately. The first thing the function does is
send off itself to the agent again. As a result, if the transaction fails the function will not be
sent off multiple times and if it succeeds the ant will move again afterwards, i.e., the ant moves
as the result of an infinite loop. The behave function makes the ant move one step into a single
direction. If the ant is carrying food it can be in 3 possible positions. If the ant is in its home
base it will drop the food. If the ant is one step away from its home base it will move into that
direction and the previous condition applies. Otherwise the ant will move into the direction that
has the most pheromones or otherwise a random direction. If the ant is not carrying food it
will either take food if it is located on a cell that has food, or otherwise forage into a random
direction that has the most pheromones.
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Since the ant’s behavior function executes all the operations inside a transaction it is certain
that the world is updated atomically. If there are a lot of ants running around which are all
executing transactions continuously there will be a lot of collisions between the ants. As such
the transaction runtime will have to deal with a lot of transaction failures.

Drawing The final part of the program we will discuss is the gui agent. The system uses the
Java Swing library to draw the ants on screen. An agent will iterate the entire grid and render
each cell individually. Since the agent does not actually write to cells it can freely iterate the
cells and read their current value. To make sure this happens in an infinite loop the agent sends
off the redraw function to itself each time he redraws.

7.1.2 Ant Simulation with Actransors
The ant simulation is a good example to demonstrate the flexibility of transactional memory and
agents. Since each ant moves concurrently with the other ants and each ant modifies parts of
the grid on each move there is a high contention on the cells that are being modified by two or
more ants. As a result an ant will often retry its transaction.

In our modified version of the ant system, ants and food are no longer represented by means
of agents but as actors. An ant actor will respond to a :go message. Upon reception it will
execute the behave function which will make the ant move in any direction, take food or drop
food. In the original implementation the ant agent sent the behave function back to itself inside
the transaction to create an infinite loop. This too, can be modelled with the actransor library.
The ant actor sends a :go message to itself inside the transaction. This message then carries the
dependency with it from the currently running transaction. If it retries or commits the actor is
aware of this next time it receives the message and thus either removes the messages sent form a
retrying transaction or processes the message that came from a committed transaction. As such
every message in the in-box of the ant actor is processed accordingly.

Listing 7.3: Creation of an ant actor.
1 (create-actor
2 name
3 (fn [loc]
4 (let [new-loc (receive
5 ([:go]
6 (behave loc )))]
7 (recur new-loc )))
8 loc)

The food actors have some additional work. In the previous example the ants checked the
food amount theirselves and took one from the pile. In our example we have extracted that logic
into the food actor. In this case an ant will just ask the food actor for the maximum amount
that it can get. If the food actor has less food than requested it returns the remainder of its
inventory, otherwise it returns what the ant asked for. The important part of this code is that
the request for food coming from the ant is sent from within a transaction. As such, if the ant’s
transaction fails the food actor will not decrement its food stash either. As such the program
always remains in a consistent state. And finally, due to the isolation principle no other ant can
reduce the food stash while the food actor is handling the request of a single ant.
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Listing 7.4: Creation of a food actor.
1 (create-actor
2 name
3 (fn [stash place]
4 (let [new-stash
5 (receive ([:get-food delta sender]
6 (if (> delta stash)
7 (do (! sender :food {:amount stash })
8 0)
9 (do (! sender :food {:amount delta })

10 (- stash delta ))))
11 ([:read-food sender]
12 (! sender {:status stash})
13 stash ))]
14 (recur new-stash place )))
15 food place)

7.1.3 Conclusion
The ant simulation program is an example of how powerful transactional memory can be. By
applying the actransor library to this example we have shown that the library is able to model
programs that have been written by using the built in concurrency paradigms of Clojure, namely
agents and STM. However, by using the actransor library instead of agents it is possible for ants
to have intercommunication. For example it would be possible to implement a collision algorithm
between ants. If two ants cross paths both could agree upon a direction to go such that one
ant would not have to remain idle while the other ant moves out of the way. Using only agents
such additions to the program are not possibly since agents themselves do not support two-way
communication.

7.2 Semantics
The current implementation of Actransors respects most of the semantic properties listed for
actors in chapter 2. We will now discuss informally each of the properties and reason why they
will remain in tact. Note however that the current implementation is a library on top of Clojure,
which itself is a library language. This poses certain limitations on the implementation of the
language. For example, it would be a very tedious if not impossible task to enfore clojure vars or
Java objects to be read-only by certain threads except the thread that created them. As such,
not all semantic properties can be guaranteed and the following semantics rely on convention.
However, implementing the language from the ground up gives a lot more freedom in design
choices to safeguard semantics.

7.2.1 Actors
State Encapsulation The implementation of actransors uses a function definition as the be-
havior for an actor. The state of an actor is defined as the binding of a value to a formal parameter
of that function. As such, by design of Clojure it is impossible to change the state of an actor
from outside of its behavior. The state is not stored as a globally accessible variable and as such
is immutable from the outside. Moreover, Clojure is a functional language and as such does not
support mutability on native Clojure datastructures except vars. However, using the underlying
Java object system or vars the programmer is able to create stateful mutable values. Hence, the
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guarantee of this property relies on the convention of using immutable Clojure datastructures to
hold the state of an actor.

Safe message passing Safe message passing is also guaranteed by the functionality of Clojure.
Any created value is immutable and represented as a functional data structure. As such, passing
a reference to a value does not damage safe message passing because any other function modifying
this reference will obtain a new reference, leaving the original datastructure untouched. Hence, it
is safe to pass Clojure datastructures as parameters in a message. As stated above however, it is
indeed possible to circumvent this semantic by using stateful Java objects or vars and modifying
fields or values of these objects. Thus, the safe message passing semantic is guaranteed if the
programmer follows the convention of not modifying shared stateful object instances that it did
not create itself.

Atomicity Atomicity is not guaranteed in this implementation. Since this thesis focusses on
shared mutable state between actors by the means of software transactional memory it is possible
for an actor’s execution to depend on the value of such a mutable value. As such, by design this
property has been damaged and can not be guaranteed.

Location Transparency and Mobility Location transparency and mobility do not apply to
this implementation. The reason is that the implementation does not support distributed actors.
Software transactional memory is a concurrency paradigm used in a non-distributed context.
Hence, we chose to not model distributed actors explicitly.

Fairness Fairness is guaranteed in this implementation. The reason is that an actor is imple-
mented as a future. This means that the future is executed in the thread pool of the Clojure
runtime which in turn is a threadpool in Java. Hence, the responsibility for fairness is passed on
to the JVM implementation.

7.2.2 Software Transactional Memory
Serializability and 1-Copy Serializability The two semantic properties discussed above
are respected in the current implementation. In effect not much has changed in the runtime
of transactional memory. The only change to consider is that transactions can now be in the
waiting status instead of committed, running or aborted. The possible problem that could arise
is in the barging process of the Clojure STM. A transaction that requires exclusive access to a
transactional variable which is owned by another transaction will try to barge that transaction
causing it to rerty, if it is not running longer than the barging transaction. As such, if a
transaction is in the waiting state it can hold exclusive access to transactional variables and
the runtime will try to barge such transactions. A simple modification to the barging protocol
that disallows barging of waiting transactions resolves this issue. This is necessary because the
point of a waiting transaction is to signal to its dependees that it is sure to commit but is
held back by one of its dependencies. Consequently serializability and 1-Copy serializability are
preserved.

Regarding liveness in software transactional memory there is a possibility of deadlocks. An
actor language such as Erlang can reside in a deadlock by design. Suppose an actor A is waiting
for a message x coming from actor B. At that same time B is waiting for a message from A.
These actors reside in a deadlock because neither will send the message. Introducing transaction
in this context does not resolve this issue. The actors will still block indefinitely.
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7.3 Conclusion
This chapter has shown an example program that uses transactions extensively. We have trans-
lated this program such that it used the actransors library implemented in this thesis. The
program has not lost any expressiveness and has gained potential for enhancements that would
otherwise not have been possible using the agent concurrency paradigm.

After that it has been shown informally that all the semantic properties that we have listed in
chapter 2 are still preserved under convention. However, implementing actransors from scratch
would would allow us to enforce these semantics instead relying on convention.



8
Related Work

This chapter will cover two papers that are relevant to the research presented in this thesis. Each
paper will be discussed and points of divergence between our research and that of the paper will
be highlighted.

8.1 Transactors
8.1.1 Introduction
Transactors (Field & Varela, 2005) is a computational model built to model distributed actors,
but much more fault-tolerant and composable than traditional actors such that it is possible to
compose Transactor systems with ease and still maintain fault tolerance at a system level. The
composition of elements using this model does not require any additional central coordination nor
middleware. For example, two systems written using this model should be able to communicate
without any additional glue code and still maintain the provided fault tolerance and distributed
state consistency across services. The paper formalizes the model with the τ calculus and proves
several liveness and safety aspects of the model.

8.1.2 Transactors
The goal of the paper is to create a new calculus, the τ calculus, and extensions to the actor
model as originally described by Agha (1986) that guarantee that in case of failure a Transactor
(actor) will still maintain a consistent snapshot of the distributed system’s state by means of
rolling back; resulting in a failure-resilient distributed actor model. Note that this paper does
indeed handle distributed actors, which is in contrast with my proposed solution which does not
work in a distributed setting.

Stabilizing and Checkpointing

A Transactor can call stabilize to become in a stable state. This is intuitively speaking a
promise to not change its state (e.g., by calling setstate). An actor can always become stable,
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no matter if it has dependencies or not. Any subsequent calls to setstate will then be a no-op.
The only way for a transactor to exit a stable state is by either checkpointing, or by rolling back.
If neither happens the Transactor can not modify its state.

A Transactor can save its state explicitly by calling the checkpoint function. If a Transactor
does not have any dependencies at that point it can do this. The Transactor will save its current
state so that it can be restored in case of failure. If it were to rollback the next time this is
the state it will jump back to. An actor can also have dependencies and still checkpoint if all
the dependencies have either stabilized or checkpointed, otherwise checkpoint is just a no-op.
The Transactor can only determine this with the given information in its dependency list. If a
dependency has stabilized in the meanwhile the actor can not know this unless it has received a
message from an arbitrary actor that carries with it updated information about the state of the
actor. As a result, the programmer should write code that sends “ping” messages to update the
Transactor status to its dependees (see Figure 8.1). Hence, to make sure a program is resilient
and can revert back to a previous state in case of failure in an orderly manner the programmer
has to explicitly stabilize and checkpoint. Without explicit state management in this way the
system will still go down in its entirety.

Dependencies

The model uses dependencies that piggyback on sent messages to percolate a Transactor’s state
across the system. A message send will contain all the dependencies of the sending actor. Each
time a Transactor receives a message it becomes dependent on all the actors that are in the
message’s dependency map. If an actor a is depending on an arbitrary actor, x, and receives a
message from actor b, who is also depending on x, a will update its dependency information on
x by the possibly new values inside the message coming from b. If and only if a then notices that
one of its dependencies has rolled back since it last communicated with it, a will roll back as
well. Do note that an actor can only notice that a dependency has rolled back when it receives
a message from it directly, or receives a message that contains the actors current status in a
dependency map. As such, there is an arbitrary delay between the actual failure of an actor and
the propagation of this information through the system.

Rollback

As stated before an actor can receive a message which contains dependency information which
results in a rollback. If an actor has previously checkpointed that is the state the actor will
revert back to. If no such checkpoint exists the actor will simply vanish. Reverting back to the
old state allows the actor to receive messages again. If the actor sends a message to any actor
it will carry the information with it that it has rolled back and the current version it is now in.
Any receiving actor that was depending on the previous state of the actor now has to rollback
as well but can only do so when it receives a message that contains the new information. If no
such message is ever received the depending actor will not abort and the system will be in an
inconsistent state.

Example

To elaborate the above notions an example (Figure 8.1) is taken from the paper (Field & Varela,
2005). It represents a simple bank account actor that will be used to represent a users bank
account. The second code listing on the right hand side represents an ATM. It can transfer
money from one account to another. Note that any of these three actors can run on their own
network service and can thus be distributed. The bank account has a single value as its state:
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the balance. The ATM has three values: savings, checking, and acks (line 22). The first two are
two bank accounts for single user in between which money can be transferred. The third value
is used to checkpoint and finish a transaction if a transfer was successful and will be explained
in more detail further down.

If the owner of the ATM wants to transfer money he sends a message to teller with an amount
(line 4). Upon reception teller will send a message to the savings account to increase its balance
with delta (line 5). A message to the checking account is sent as well to decrease its balance (line
6). Finally teller will go back to the ready state to receive another message (line 3). Note that
each message that has been sent to the two accounts carries with it a dependency, effectively
making the two account depend on the teller.

When the bankaccount actor (savings account or checking account) receives a message from
the teller it in- or decrements it current balance (line 4). Next a check is made to make sure that
the balance did not go below 0 (line 6). If the check passes the transactor calls stabilize (line
10), promising it will not change its state until it can checkpoint. Finally it sends a message
back to the sender (ATM ) notifying it that it has adjusted the balance successfully (line 11). If
the check fails the transactor will send a message back telling the ATM that it failed to adjust
its balance and roll back to its initial state (lines 7-8). Implicitly the messages contain the new
information of the account that it is either at a stable point or that it has rolled back. This
updates the information in the ATM account upon reception of that message.

The ATM transactor will receive two done messages after it started a transfer. Upon reception
of a done message it will send a message to stdout containing the message attached to the done
message from the account (line 8). Next it increments the ack value in its state, which keeps
track of how many done message it has already received (line 9). If the count is at 2, which means
both accounts have replied, the ATM will stabilize (line 11). Finally the ATM has to make sure
that each transactor involved in this scenario receives a ping message (line 12-15). This is needed
to make sure all parties have up to date state information about each other. First of all it will
send a message to both accounts requesting them to ping each other. This will make sure that
both accounts have up-to-date information about each other. And finally ATM will request both
accounts to ping back to him. Suppose that one of both account failed and rolled back. The
failed account still receives the ping request and then sends a ping to the other account, which
will receive it and notice that the account has rolled back when it calls checkpoint, effectively
causing a rollback as well. Finally both accounts send a ping message to the ATM which will
try to checkpoint as well, noticing that both accounts have rolled back. As a result the ATM
will roll back too and the system is back in its original state.

8.1.3 Conclusion
Transactors does not explictly model software transactional memory in combination with Actors
but it does use a notion of transactions and rollback in case of failure at system level (i.e., a failing
actor). This paper forms the basis of the contexts that are present in our formal semantics.

The paper introduces three constructs to the actor model, stabilize, setstate and rollback.
A transactor can receive messages and send messages. Not unlike our formal semantics these
carry dependencies with them. However, using Transactors dependency information is carried
only with messages and no actor can read the state of an other actor in real-time which is a
logical consequence of the distributed nature of the system. As a result actors can not respond
immediately to failure of a dependency. In our formal semantics an actor will read the state of
an actor in real-time and act accordingly at the end of each atomic turn or transaction which
allows for more fine-grained failure. Using transactors two actors can keep communicating and
doing computations to only be notified of failure after an arbitrary long period of time. This
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Listing 8.1: Bank account example of Transactors (Field & Varela, 2005)

1 let bankaccount = trans
2 declstate <bal > in
3 msgcase
4 adj <delta ,atm > =>
5 bal := !bal + delta;
6 if !bal < 0 then
7 send done <’Not enough funds!’> to atm
8 rollback
9 else

10 stabilize;
11 send done <’Balance updated successfully ’> to atm
12 fi
13
14 | pingreq <requester > =>
15 send ping <> to requester
16 | ping <> => // may cause rollback
17 checkpoint
18 esac
19 init
20 <0>
21 snart

1 let teller = trans
2 declstate <inacct , outacct , acks > in
3 msgcase
4 transfer <delta > =>
5 send adj <delta , self > to !inacct;
6 send adj <-delta , self > to !outacct;
7 | done <msg > =>
8 send println <msg > to stdout;
9 acks := !acks + 1;

10 if !acks := 2 then
11 stabilize;
12 send pingreq <!inacct > to !outacct;
13 send pingreq <!outacct > to !inacct;
14 send pingreq <self > to !outacct;
15 send pingreq <self > to !inacct
16 fi
17 | ping <> => // may cause rollback
18 checkpoint
19 esac
20 etats
21 init
22 <savings , checking , 0>
23 snart

could cause a system to do a lot of computations that will eventually be discarded. On the other
hand our formal semantics do not allow for distributed actors but that would be in contrast with
the shared local state that STM models.

A lengthy proof is provided showing that given two global states k and k′ of a program
which are related by a given execution trace t that might contain system failures, node failure,
application-level failures or messages losses, there always exists an alternative equivalent execu-
tion trace t′ that only contains possible message losses. This is a very important property that
allows the programmer to completely disregard the notion of node failure in his program as the
model takes care of all these issues.

A final important point of divergence between our formal semantics and Transactors is that by
combining STM and Actors we do not want to introduce explicit new constructs to the language.
All the defined behavior of our semantics should be implicit and the programmer should be able
to be oblivious of the underlying semantic. Using Transactors the programmer has to write
explicit code on how and when to checkpoint or rollback. This means that the programmer has
the extra burden of doing bookkeeping, as well as programming additional ping algorithms to
percolate the new state of a transactor explicitly to the system.

8.2 Communicating Memory Transactions
8.2.1 Introduction
The second and highly related paper we wish to discuss is “Communicating Memory Trans-
actions” by Lesani and Palsberg (2011). As we will see below this paper also combines the
Actor model together with software transactional memory. The means to do this is again by
piggybacking dependencies onto messages and aborting transactions if any dependencies have
failed.
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8.2.2 Message Passing
The message sending semantic in the paper is not strictly speaking for the Actor model but a
more generic approach; message passing using channels. Actors however are a form of message
passing. The paper mentions an implementation for Scala as well, which is an actor framework.

The semantic for sending and receiving messages is much alike what we proposed. Sending a
message from within a transaction carries the transaction identifier with it. It does not however
carry the dependencies of the sender, which is the case in our implementation. Upon reception of
the message the receiver is depending on the sender. Note that a receiver can depend on multiple
transactions. The semantic does not provide any rules for sending and receiving messages outside
of transactions.

8.2.3 Software Transactional Memory
As mentioned, the paper also uses software transactional memory. However, a different approach
than the one we are using. The STM model we chose to formalize is the one that is present in
Clojure which is based on Multi Version Concurrency Control (MVCC) which uses a pessimistic
approach but allows for explicit optimism.

In an optimistic approach the transaction contains a local copy of the global heap and will
always perform its read and writes to the transactional variables and check if the actions are still
valid at the end of the transaction with respect to the global heap. This allows the transactional
runtime to apply a simple or complex logic algorithm to determine validity of the transaction
during the commit protocol. So if a transaction writes to a transactional variable that has been
written to during the execution the transaction will just go on. In the end the transaction can
then use any logic to determine if the write is still valid or should be retried and consequently
the entire transaction should retry.

A pessimistic approach will determine validity at each read or write operation during the
transaction with respect to the global heap, which is what MVCC does. If a transaction tries to
write to a transactional variable that has been written to since the transaction started the trans-
action will abort immediately, assuming that the write would cause faulty semantics. Otherwise
the written value is stored in the transaction’s in-transaction value store. However, in Clojure
there is the commute keyword. This keyword allows the programmer to apply an operation to
a transactional variable that is commutative. The transactions in Lesani and Palsberg (2011),
which are based on the transactions described by Koskinen, Parkinson, and Herlihy (2010) use
this approach implicitly.

Moverness

As described in Koskinen et al. (2010), moverness is a relation between two operations that defines
if either one can be executed before or after the other in order to preserve semantics. We will
elaborate by an example taken from the paper how this helps with software transactional memory.
Figure 8.2 depicts a scenario where two threads are executing a transaction simultaneously. We
will discuss how the scenario will he handled by MVCC and STM as described by Koskinen et
al. (2010).

Clojure MVCC For the example we will assume that no other threads are running nor any
other transactions. Ergo, no other transactions can intervene with the two in the example. In
case of the Clojure semantic the first thread will set the value of x to 3 (line 3, left hand side). If
no other thread has written to x since the atomic block started the transaction will store 3 inside
its transaction store and continue. At the same time thread 2 will increment the transactional
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Listing 8.2: Illustration of moverness

1 // Thread 1
2 atomic {
3 x := 3;
4 z++;
5 }

1 // Thread 2
2 atomic {
3 z++;
4 y := 4;
5 }
6

variable z (line 3 right hand side). It does so by incrementing the value and storing the newly
calculated value in the thread-local heap. Next, thread 1 will try to increment the z variable
as well. However, the transaction of thread 2, which is not yet finished has already written
to the z variable. As a result thread 1 encounters a collision and will abort. To be precise,
the transaction of thread 1 will first try to barge the owning transaction (thread 2). Barging a
transaction means forcing it to retry and release any transactional variables it holds. If that fails
the transaction retries in the hope that the owning transaction will be finished by the time it
retries. Formally, there is no serial execution of these transactions that will preserve semantics
because the increment operation is considered a read and a write operation and the set of written
refs of both transaction intersects. There is no such scenario possible using MVCC.

Coarse Grained Transactions According to Koskinen et al. (2010) both transactions can
still continue. The reason for this is that the increment of the variable z is commutative. What
this means is that even though two transactions apply ++ during two concurrent transactions,
it does not matter who applies ++ first, the end result is the same. This is what moverness is
about. Statements that can be swapped on a timeline of execution while still maintaining the
same semantic.

For the example both transactions will keep a log of the operations they apply. Thread 1 and
2 will finish their transaction and end up with a log that has to be applied to the global state. The
system proposed can handle this scenario better than common STM. It knows that the increment
can be considered a single operation and thus both transaction logs can be interleaved in such
a way that both transactions preserve their individual semantics and commit order is preserved.
An example of such an interleaving is given in Table 8.1. The table shows an interleaving that
can not be processed by common STM implementations such as Clojure STM. At the point of *
in Table 8.1 the runtime of MVCC will notice that that variable has been written to and that it
can not continue the current transaction (Thread 1). However, Coarse grained transactions will
notice that this operation is commutative with the operation done previously (** Table 8.1). The
runtime can then construct an alternative interleaving that can pass which is shown in Table 8.2.
Notice that the operation marked * from Table 8.1 has been moved to the left of of the operation
marked **. This is possible due to the fact that both operations are commutative.

Thread 1 x := 3 z++* commit
Thread 2 z++** y := 4 commit

Table 8.1: Logged interleaving
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Listing 8.3: Clojure commute vs alter example

1 (dosync
2 (commute r inc))

1 (dosync
2 (commute r inc))

1 (dosync
2 (ref-set! r (+ @r 1)))

1 (dosync
2 (ref-set! r (+ @r 1)))

Thread 1 x := 3 z++ commit
Thread 2 z++ y := 4 commit

Table 8.2: Corrected interleaving

Clojure commute However not modeled in our formal semantics, the implementation of Clojure
allows for the programmer to explicitly mark an operation as commutative. Instead of using the
regular set-ref operation, once can choose to use the commute operation. Figure 8.3 depicts the
scenario where two transactions increment the same transactional variable. Once by using regular
ref-set!, which takes a new value for the transactional variable and overwrites the previous
value. The commute operation implies that the operation does not care about the value of the
transactional value in the mean while. The operation is applied to the ref and the new value is
stored inside the thread-local heap. When the transaction commits the commuted functions are
applied to the global heap. The first part of the example, using ref-set!, will result in the first
transaction succeeding after the first attempt and the second transaction retrying as long as the
first one lives (or vice versa depending on which transaction is scheduled first). However, using
commute both transactions succeed within the first try. Note the programmer has to instruct the
runtime explicitly that the function application is commutative where as using the transactions
defined by (Koskinen et al., 2010) this behavior is implicit and is determined at runtime by
constructing an alternative interleaving of the transactions.

8.2.4 Committing Transactions
Again, much like our formal semantics the given semantics provides means to commit groups of
transactions. The committing of transactions is key in making the actor model and STM work
together. A transaction without dependencies or dependees can commit like a regular STM
transaction and such case will not be discussed in detail. A transaction that has dependencies or
dependees is a more tricky situation. It is very likely that sending a message to an actor eventually
has the effect of a message being sent back. Since each message carries with it dependencies,
cyclic dependencies are bound to happen (i.e., the set of dependencies and dependees intersects).
On account that (Lesani & Palsberg, 2011) is based on the STM implantation by Koskinen et al.
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(2010), committing transactions that are interdependent relies heavily on the transaction logs to
allow for a safe commit. We will now elaborate the details of the commit protocol.

Suppose a scenario in which a transaction τ , running on actor A writes to a set of transactional
variables S. Inside τ a send is made to actor B, which receives this message inside a transaction
τ ′. At the point of reception actor B becomes a dependee of τ . In response to receiving the
message, actor B sends a message back to actor A who receives it inside τ . Consequently, both
actors depend on each others transaction. Ergo, neither can wait for their dependency to resolve
or a deadlock would occur.

According to the definition of the commit rule in (Lesani & Palsberg, 2011), these transactions
form a cluster. A cluster is defines as follows. A set of transactions (dependencies) form a cluster
when all of them have reached the syntactic end of their transaction. Each of these transactions
can have unresolved (uncommitted) dependencies. The dependencies form a cluster if and only
if these unresolved dependencies are in the cluster itself. All other dependencies outside of
the cluster must be in a committed state. The reason that a cluster can contain uncommitted
transaction is simple. It is impossible to require the opposite because it would imply deadlocks
in case of interdepending transactions.

The second requirement is the moverness of the logs of all transactions. All transaction logs of
the members of the cluster must be right movers with respect to already committed transactions.
If this were not the case we could not apply the methods in the transaction because they would
cause a collision with previously committed transaction.

Simply put, all entries in the logs of the transactions of the cluster have to be valid when
applied to the global heap, after other transactions have committed. Recall from the example that
using right moverness the entries of the log could be rearranged in such a way that committing
was possible while maintaining commit order and semantics. Finally, all the logs of the cluster’s
transactions need to have a specific ordering such that they can be committed and still respect the
semantics of each transaction in isolation. This can be obtained by applying the right moverness
to the entire log of the cluster and finding an ordering such that each entry in the log is a right
mover with respect to all entries before it in the log. If all these conditions have been met there
is a cluster and the transactions can all be committed.

8.2.5 Conclusion
While the paper handles the exact same subject as this thesis there are plenty of differences.
For one, the paper uses a different STM implementation than used in this thesis. The STM
implementation defined in (Koskinen et al., 2010) allows for a more fine grained control over the
commit protocol by means of inspecting transaction logs and rearranging them in such a way
that commit order is preserved but no collisions occur. In contrast with MVCC, it allows for a
more optimistic approach, while solving most issues with a more complex commit protocol. In
our case there is no control over this process since the Clojure implementation uses pessimistic
transactions (i.e., transactions fail upon writing a stale ref). Any decision about collisions is
taken during the run of the transaction. Writing to a transactional variable during a transaction
that has new values since the transaction started means an immediate abort. This has an impact
on how to solve collective commits. Since the semantics of MVCC do not allow for transaction
logs to be reordered the semantics of the commit protocol are less flexible.

The proposed semantic in the paper is rather dense compared to the one we have introduced
in chapter 5. The paper states that it would be straightforward to implement or model sending
and receiving outside of transactions. A receive block that is executed as a consequence of a
message send in a transaction has a very different semantic than one that has been started from
a message coming from a stable state. A receive block that does not contain a transaction still
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has to wait for the dependency to be in a state which allows for the receive block to end, or
abort. Ergo, we consider the expansion a valuable addition to this paper.



9
Conclusion

In this chapter we will revisit our intial problem statement and the contributions made in this
dissertation. We will briefly review the formal semantics introduced in chapter 5. Finally we will
discuss the future work of this thesis and conclude the dissertation.

9.1 Problem Statement Revisited
This dissertation addresses the issues that arise when programmers want to combine the actor
model with software transactional memory. In chapter 1 we have discussed why programmers
tend to mix concurrency models. One specific concurrency model is better suited for a particular
task at hand than an other concurrency model. Hence, programmers tend to implement differents
parts of a larger program using different concurrency models. Every concurrency model has
certain semantic properties that are guaranteed by its design. However, combining concurrency
models with one another can violate the semantics of either model. Swalens et al. (2014) have
shown that not every concurrency model present in Clojure is well integrated with the rest of
the models. For the actor model and software transactional memory the problems reside in the
fact that transactional memory is designed such that transactional code can execute an arbitrary
number of times. Sending and receiving messages in a transaction are considered IO operations
because they alter the state of the entire system. STM does not integrate IO operations or
side effects in general in transactions by design. As such, combining the actor model with STM
without further thought causes programs to behave unreliably and produce faulty results.

To facilitate STM in the actor model one has to modify how the STM runtime handles
message sends and how the actor model handles message receiving in order to act accordingly.
However, as we have seen, deciding the proper course of action in each scenario is a complex
decision tree.

89
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9.2 Contributions
• In chapter 2 we have discussed the details of both the actor model and software transactional
memory. In order to investigate the correctness of transactional systems and actor models
we have created a unified list of semantic properties based on existing literature. Finally,
existing literature does not agree on a single definition for serializability. Consequently
we have based ourselves on an existing formal model (Bernstein & Goodman, 1983) and
have defined serializability and 1-Copy serializabilty using this model based on the work of
Papadimitriou (1979).

• In chapter 3 we motivate the desirability of being able to use transactional memory in
combination with the actor model by means of the apples and oranges example. The
example has shown that there are use cases where shared memory in the actor model by
means of transactional memory can reduce code complexity and readability. We have also
pinpointed the problem scenarios of the ad-hoc combination by means of examples.

• Chapter 5 introduced formal semantics that strictly define the behavior of a language that
adheres to the semantic properties mentioned in chapter 2. The semantics not only model
actor operations, i.e., message sending and receiving, in transactions but also model the
operations outside of actors.

• For STM we have used the metacircular implementation by Van Cutsem (2015). However,
for the actor model we have implemented a small library from scratch. An implementation
as proof of concept of the conglomerate model has been provided under the name Actransors
and is discussed in chapter 6. The implementation is provided as a Clojure library that
allows programmers to use transactional memory and actors in Clojure.

• In chapter 7 we have revisited the semantic properties listed in chapter 2. We have found
that all semantic properties listed in chapter 2 are guaranteed when the programmer fol-
lows the convention of not sharing mutable objects between actors. Furthermore we have
concluded that if the actransors library would have been implemented as a language from
scratch instead of a library these semantics could be guaranteed by design instead of relying
on convention.

9.3 Semantics in a nutshell
The proposed solution in this dissertation uses the notion of volatile, stable and depending
contexts to attach metadata to sent messages. Any message that is sent will have metadata
attached to it identifying the context it was sent from and the current status of the context.

The notion of contexts in messages allows the receiving actor to be aware of a possible failure
of the context it came from such as a transaction as it can track the status of the sending context
in realtime. After an actor has executed the associated behavior for a received message it can
then either block until the sending context notifies its dependents that it will finalize without
failure or it can discard all changes made to its state and jump back to the point before the
message was received if the sender has notified of a failure. In the latter case all messages that
the actor has sent or received become invalid. The failure will percolate through to all the parts
of the entire system that were affected by the initial message send by means of dependency
propagation. Any time an actor is processing a message that has metadata identifying a volatile
context, i.e., possible failure, each message sent from that point on also carries this data with
it. As a result, sending messages in combination creates a complex dependency graph – that
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is not always acyclic –which allows each actor to be responsible for his own in-box and resolve
dependency problems in isolation.

9.4 Future Work
This dissertation was a step in the direction of fully integrating software transactional memory
into the actor model. We will now discuss a few aspects of this dissertation that are opportunities
for further research.

9.4.1 Validation
The current validation of the formal semantics is based on the ant colony program by Rich Hickey,
the inventor of Clojure. It would be desirable to apply the Actransors library to bigger projects to
have an overview of the overall impact on readability, complexity and overall verbosity of the code.
However, the difficulty in this lies in the fact that Clojure does not support actors natively. As
such programmers tend to resort to other concurrency models to implement concurrent programs
in Clojure and the corpus of programs of Clojure programs that use actors and other concurrency
models is slim.

9.4.2 Formal Semantics
Formal proof The formal semantics provided in chapter 5 are not proven to be correct by
means of a formal proof. Proving that the model adheres to the listed semantic properties of
chapter 2 would allow us to weed out possible discrepancies that still remain in the model but
are unknown at this point in time.

Models The current formal semantics are based on an actor model that is based on actors
implemented in Erlang. As explained in chapter 2 actors in this model are a continuously running
process that can receive messages at any point during the execution of that process. As such this
model allows for nested receives. Given the formal semantics presented in this dissertation it is
possible, by using the current formal semantics as a basis, to provide formal semantics for other
variations of these models. For example, the traditional actor model by Agha could possibly
simplify the semantics drastically. That model does not allow nested receives and has an explicit
statement to change an actor’s behavior, namely the become statement. Consequently, the Agha
actor model has a very clear boundary of atomic turns, which are rather vague in Erlang actors
due to the fact that they are a continuous process.

9.4.3 Implementation
The implementation of Actransors is a proof of concept. As such it has room for enhancements.
However, as it currently stands the library has been implemented using Clojure which is a lan-
guage that runs on top of the Java Virtual Machine. By implementing the language from scratch
or modifying an existing language such that Actransors are an integral part of the compilation
or interpretation process would enable us to significantly improve the performance and would let
us enforce the language semantics we have listed in chapter 2.
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9.5 Conclusion
This dissertation has proven informally and by means of proof of concept that it is in fact
possible to combine software transactional memory with the actor model while still maintaining
the semantic properties of each model. More specifically, Multiversion Concurrency Control
STM with Erlang-style actors. We have studied the correctness criteria for both models and
have created a formal semantic that allows programmers to freely combine these models without
having to worry about additional safety and liveness issues in their programs.



References 93

References
Agha, G. (1986). Actors: A model of concurrent computation in distributed systems. Cambridge,

MA, USA: MIT Press.
Armstrong, J. (2007). Programming erlang: Software for a concurrent world. Pragmatic Book-

shelf.
Bernstein, P. A., & Goodman, N. (1981, June). Concurrency control in distributed database

systems. ACM Comput. Surv., 13 (2), 185–221. Retrieved from http://doi.acm.org/
10.1145/356842.356846

Bernstein, P. A., & Goodman, N. (1983, December). Multiversion concurrency control - theory
and algorithms. ACM Trans. Database Syst., 8 (4), 465–483. Retrieved from http://
doi.acm.org/10.1145/319996.319998

De Koster, J. (2014). Domains: Language abstractions for controlling shared mutable state in
actor systems. Brussels, Belgium: Vrije Universiteit Brussel.

De Koster, J., Marr, S., D’Hondt, T., & Van Cutsem, T. (2013). Tanks: Multiple reader,
single writer actors. In Proceedings of the 2013 workshop on programming based on actors,
agents, and decentralized control (pp. 61–68). New York, NY, USA: ACM. Retrieved from
http://doi.acm.org/10.1145/2541329.2541331

Fekete, A., Liarokapis, D., O’Neil, E., O’Neil, P., & Shasha, D. (2005, June). Making snapshot
isolation serializable. ACM Trans. Database Syst., 30 (2), 492–528. Retrieved from http://
doi.acm.org/10.1145/1071610.1071615

Field, J., & Varela, C. A. (2005, January). Transactors: A programming model for maintaining
globally consistent distributed state in unreliable environments. SIGPLAN Notices, 40 (1),
195–208. Retrieved from http://doi.acm.org/10.1145/1047659.1040322

Fuggetta, A., Picco, G. P., & Vigna, G. (1998, May). Understanding code mobility. IEEE Trans.
Softw. Eng., 24 (5), 342–361. Retrieved from http://dx.doi.org/10.1109/32.685258

Haller, P., & Odersky, M. (2009, February). Scala actors: Unifying thread-based and event-
based programming. Theor. Comput. Sci., 410 (2-3), 202–220. Retrieved from http://
dx.doi.org/10.1016/j.tcs.2008.09.019

Herlihy, M., & Moss, J. E. B. (1993, May). Transactional memory: Architectural support for
lock-free data structures. SIGARCH Comput. Archit. News, 21 (2), 289–300. Retrieved
from http://doi.acm.org/10.1145/173682.165164

Hewitt, C., Bishop, P., & Steiger, R. (1973). A universal modular actor formalism for artificial
intelligence. In Proceedings of the 3rd international joint conference on artificial intelligence
(pp. 235–245). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. Retrieved from
http://dl.acm.org/citation.cfm?id=1624775.1624804

Karmani, R. K., Shali, A., & Agha, G. (2009). Actor frameworks for the jvm platform: A
comparative analysis. In Proceedings of the 7th international conference on principles and
practice of programming in java (pp. 11–20). New York, NY, USA: ACM. Retrieved from
http://doi.acm.org/10.1145/1596655.1596658

Koskinen, E., Parkinson, M., & Herlihy, M. (2010, January). Coarse-grained transactions.
SIGPLAN Not., 45 (1), 19–30. Retrieved from http://doi.acm.org/10.1145/1707801
.1706304

Lamport, L. (1977, March). Proving the correctness of multiprocess programs. IEEE Trans.
Softw. Eng., 3 (2), 125–143. Retrieved from http://dx.doi.org/10.1109/TSE.1977
.229904

Lange, D. B., Oshima, M., Karjoth, G., & Kosaka, K. (1997). Aglets: Programming mobile
agents in java. In Proceedings of the international conference on worldwide computing

http://doi.acm.org/10.1145/356842.356846
http://doi.acm.org/10.1145/356842.356846
http://doi.acm.org/10.1145/319996.319998
http://doi.acm.org/10.1145/319996.319998
http://doi.acm.org/10.1145/2541329.2541331
http://doi.acm.org/10.1145/1071610.1071615
http://doi.acm.org/10.1145/1071610.1071615
http://doi.acm.org/10.1145/1047659.1040322
http://dx.doi.org/10.1109/32.685258
http://dx.doi.org/10.1016/j.tcs.2008.09.019
http://dx.doi.org/10.1016/j.tcs.2008.09.019
http://doi.acm.org/10.1145/173682.165164
http://dl.acm.org/citation.cfm?id=1624775.1624804
http://doi.acm.org/10.1145/1596655.1596658
http://doi.acm.org/10.1145/1707801.1706304
http://doi.acm.org/10.1145/1707801.1706304
http://dx.doi.org/10.1109/TSE.1977.229904
http://dx.doi.org/10.1109/TSE.1977.229904


References 94

and its applications (pp. 253–266). London, UK, UK: Springer-Verlag. Retrieved from
http://dl.acm.org/citation.cfm?id=645965.674418

Lea, D. (1996). Concurrent programming in java: Design principles and patterns. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc.

Lee, E. A. (2006, May). The problem with threads. Computer , 39 (5), 33–42. Retrieved from
http://dx.doi.org/10.1109/MC.2006.180

Lesani, M., & Palsberg, J. (2011, February). Communicating memory transactions. SIGPLAN
Not., 46 (8), 157–168. Retrieved from http://doi.acm.org/10.1145/2038037.1941577

Papadimitriou, C. H. (1979, October). The serializability of concurrent database updates.
Journal of the ACM , 26 (4), 631–653. Retrieved from http://doi.acm.org/10.1145/
322154.322158

Shavit, N., & Touitou, D. (1995). Software transactional memory. In Proceedings of the fourteenth
annual acm symposium on principles of distributed computing (pp. 204–213). New York,
NY, USA: ACM. Retrieved from http://doi.acm.org/10.1145/224964.224987

Smith, B., & Hewitt, C. (1975, 10). A plasma primer (Tech. Rep.). Cambridge, Massachusetts:
MIT AI Lab.

Swalens, J., Marr, S., De Koster, J., & Van Cutsem, T. (2014). Towards composable concurrency
abstractions. In A. F. Donaldson & V. T. Vasconcelos (Eds.), Proceedings 7th Workshop
on programming language approaches to concurrency and communication-centric software,
grenoble, france, 12 april 2014 (Vol. 155, p. 54-60). Open Publishing Association.

Tasharofi, S., Dinges, P., & Johnson, R. E. (2013). Why do scala developers mix the actor
model with other concurrency models? In Proceedings of the 27th european conference on
object-oriented programming (pp. 302–326). Berlin, Heidelberg: Springer-Verlag. Retrieved
from http://dx.doi.org/10.1007/978-3-642-39038-8_13

Van Cutsem, T. (2015, May). stm-in-clojure: Initial release. Retrieved from http://dx.doi
.org/10.5281/zenodo.18165

http://dl.acm.org/citation.cfm?id=645965.674418
http://dx.doi.org/10.1109/MC.2006.180
http://doi.acm.org/10.1145/2038037.1941577
http://doi.acm.org/10.1145/322154.322158
http://doi.acm.org/10.1145/322154.322158
http://doi.acm.org/10.1145/224964.224987
http://dx.doi.org/10.1007/978-3-642-39038-8_13
http://dx.doi.org/10.5281/zenodo.18165
http://dx.doi.org/10.5281/zenodo.18165

	Introduction
	Combining Concurrency Models
	Problem Statement

	Contributions
	Roadmap

	Pre-Science
	Actors
	Agha Actors
	Erlang Actors
	Semantic Properties

	Transactional Memory
	Hardware Transactional Memory
	Software Transactional Memory
	Introduction
	Multi Version Concurrency Control

	Semantic Properties
	Serializability
	1-Copy Serializability



	Combining Actors and STM
	Inadequacies of the Actor Model
	Shared State in Actors
	Motivating Example
	Syntax
	Apples and Oranges


	Ad-hoc Combination of the Actor Model and STM
	Motivating example revisited
	Apples and Oranges with STM

	Discrepancies of the the Ad-Hoc Combination
	Sending Messages
	Receiving Messages


	Conclusion

	Actransors
	Actransor Concepts
	Context
	Dependency
	Dependency Propagation
	Dependency Gathering


	Discrepancies resolved
	Conclusion

	Operational Semantics
	Introduction
	Concept
	Notation Conventions

	Grammar
	Values
	Expressions
	Standard Expressions
	Actor Expressions
	Transaction Terms
	Syntactic Sugar

	Semantic Domains
	Messages
	Actors
	Transactional Memory Entities
	Configuration Entity

	Auxiliary Operations
	Operations on Actors
	Operations on Transactions
	Operations on Messages
	Operations on In-boxes
	Operations on Transactional Variables
	Operations for receive


	Rules
	Sending
	Receiving
	End Receive
	Transactions
	Transactional Variables
	Committing


	Implementation
	Multi-version Concurrency Control STM
	Actor library
	Syntax
	Details

	Combination of Both Models
	STM
	Actor model

	Caveats
	Conclusion

	Evaluation
	Ant Simulation
	Implementation
	Ant Simulation with Actransors
	Conclusion

	Semantics
	Actors
	Software Transactional Memory

	Conclusion

	Related Work
	Transactors
	Introduction
	Transactors
	Stabilizing and Checkpointing
	Dependencies
	Rollback
	Example

	Conclusion

	Communicating Memory Transactions
	Introduction
	Message Passing
	Software Transactional Memory
	Moverness

	Committing Transactions
	Conclusion


	Conclusion
	Problem Statement Revisited
	Contributions
	Semantics in a nutshell
	Future Work
	Validation
	Formal Semantics
	Implementation

	Conclusion
	References


