
First-Class Reactive Programs for CPS
Christophe De Troyer
Software Languages Lab
Vrije Universiteit Brussel

Etterbeek, Brussels
cdetroye@vub.ac.be

Jens Nicolay
Software Languages Lab
Vrije Universiteit Brussel

Etterbeek, Brussels
jnicolay@vub.ac.be

Wolfgang De Meuter
Software Languages Lab
Vrije Universiteit Brussel

Etterbeek, Brussels
wdemeute@vub.ac.be

Abstract
Cyber-Physical Systems (CPS) are comprised of a network of
devices that vary widely in complexity, ranging from simple
sensors to autonomous robots. Traditionally, controlling and
sensing these devices happens through API communication,
in either push or pull-based fashion. We argue that the com-
putational power of these devices is converging to the point
where they can do autonomous computations. This allows
application programmers to run programs locally on the
sensors, thereby reducing the communication and workload
of more central command and control entities.
This work introduces the Potato framework that aims to

make programming CPS systems intuitively easy and fast.
Potato is based on three essential mechanisms: failure han-
dling by means of leasing, distribution by means of first-class
reactive programs, and intentional retroactive designation of
the network by means of capabilities and dynamic properties.
In this paper we focus on the reactive capabilities of our

framework. Potato enables programmers to create and de-
ploy first-class reactive programs on CPS devices at run time,
abstracting away from the API approach. Each node in the
network is equipped with a minimal actor-based middleware
that can execute first-class reactive programs. We have im-
plemented Potato as a library in Elixir and have used it to
implement several small examples.

CCSConcepts •Hardware→Emerging languages and
compilers; • Software and its engineering→Distributed
programming languages;

Keywords reactive programming, distribution, actors

ACM Reference Format:
Christophe De Troyer, Jens Nicolay, and Wolfgang De Meuter. 2017.
First-Class Reactive Programs for CPS. In Proceedings of 4th ACM

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
REBLS’17, October 23, 2017, Vancouver, Canada
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5515-5/17/10. . . $15.00
https://doi.org/10.1145/3141858.3141862

SIGPLAN International Workshop on Reactive and Event-Based Lan-
guages and Systems (REBLS’17). ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3141858.3141862

1 Introduction
CPS devices in a Cyber-Physical System (CPS), or "things"
in the Internet of Things (IoT), are smart devices [5] that
typically form a hierarchy. The generic pattern that emerges
from CPS architectures is that there are central entities (mas-
ter devices) that continuously react to the new data coming
in from sensors (slave devices) in the system, and send out
commands to the smaller devices.
Consider the example of a smartphone application that

controls the light bulbs in a house. The smartphone applica-
tion will continuously monitor its environment for nearby
light bulbs. In case a light bulb is nearby, the smartphone
will turn on the light bulb. Upon departure, the light bulb is
turned off again. Departure in this case implies disconnec-
tion. Therefore, the light bulb must autonomously decide to
turn itself off.
From an engineering standpoint, programming CPS and

IoT systems is intuitively difficult. These systems do not
map well on the mental models of functional or imperative
programming languages. The interactive scenarios (e.g., the
light bulbs example) are based on perpetual actions such as
continuous scanning of the environment, classifying nearby
devices according to their capabilities, and monitoring con-
nections to these devices. Furthermore, these systems are
comprised of heterogeneous devices, which each have their
own API. The programmer often has to resort to implement-
ing his own abstraction layer.
The nomadic traits of these devices means that commu-

nication happens over challenged connections; the devices
disconnect from the network to return shortly thereafter.
The hierarchical construction of these systems means that
the master devices explicitly control the slave devices. How-
ever, the challenged networks prohibit continuous control
by a master.

The scale of these devices implies that the programmer can
no longer individually address these devices. Hence, there is
no need for the individual semantics of a device, but rather
the semantics of an entire group. E.g., "all the devices in my
vicinity", "all the devices that are currently in an erroneous
state", or "all the light bulbs that are currently turned on".
There is a need for a declarative designation of devices.

21

https://doi.org/10.1145/3141858.3141862
https://doi.org/10.1145/3141858.3141862

REBLS’17, October 23, 2017, Vancouver, Canada Christophe De Troyer, Jens Nicolay, and Wolfgang De Meuter

Finally we argue that the distributed reactive paradigm is
an excellent fit for CPS and IoT. Often the smaller devices
in the network such as temperature sensors and actuators
merely push their value to the master nodes in the network.
Actuating slave nodes only act on instructions coming from
the master nodes. The model of acting and reacting based on
signals perfectly embodies the intuition behind CPS systems.

In this work we introduce Potato, a framework to program
CPS and IoT systems. Potato is built on the premise that
within a system, several slave and master devices communi-
cate using heterogeneous API’s over challenged connections.
Potato provides a middleware based on first-class reactive
programs that allows programmers to deploy first-class re-
active programs on remote nodes such that the nodes can
behave autonomously without permanent control of a mas-
ter. Communication between slaves and masters happens by
means of reacting to distributed signals.

Contributions The contributions of Potato are as follows.

• Potato translates each newly discovered device into a
set of generic capabilities.

• A potato program allows the programmer to send re-
active programs using a small programming language
that integrates with the on-device available capabili-
ties.

• The host language of Potato allows the programmer
to address the network using declarative intentional
retroactive addressing.

• Challenged communication between a client and server
device is handled by the middleware, while the pro-
grammer remains in full control of the leasing algo-
rithm.

The Potato framework is tailored to the use cases of CPS
and IoT systems in which the user can use the Smart Objects
in its surroundings as extensions of the application on its
smartphone or other server device. The problems posed by
these scenarios such as intermittent connections, heteroge-
neous API’s and intuitive programming model are addressed
by Potato.

Overview We give an overview of the principles and de-
sign of Potato (section 2) and discuss our implementation
of its middleware in Elixir (section 3). We then present re-
lated work (section 4) and some avenues for future work
(section 5).

2 Potato
Wedescribe the architecture of the Potatomiddleware. Potato
is a proof-of-concept middleware written in Elixir with an
embedded DSL to program clients in the network dynami-
cally by means of first-class reactive programs.
The Potato network consists of four components: net-

work discovery, DDF management, reactive capabilities, and

designation management. Below we discuss each of these
components.

2.1 Distributed Reactivity
In a Potato system, the slave and master nodes are equipped
with an actor middleware that supports first-class reactive
programs. This results in devices being able to send and
deploy reactive programs on remote nodes in the network.

Each node is aware of its local signals (e.g., time, tempera-
ture, humidity, location, etc.). These signals can be subscribed
to, as is done in contemporary reactive languages, by lifting
and applying functions. Regular functions can be lifted and
applied to a signal to produce new signals, to which in turn
new functions can be applied to generate a complex reactive
DAG.
Whenever a node has registered a new signal locally, all

nodes in the network are notified of this. From that point on,
programs deployed on this node can lift and apply functions
on this newly created signal.

Additionally, the programmer can lift functions on signals
on remote nodes as if they were local signals.
This results in a distributed web of signals spread across

the network. The main goal of this approach is that much of
the logic (e.g., averaging signals, minimum andmaximumval-
ues, etc.) no longer has to be computed on master nodes, but
immediately can be computed on slave nodes. This reduces
traffic on the network and reduces resource consumption on
the master nodes.

Additionally, if more than one master device needs a new
signal based on a remote signal, duplicate calculations on
master devices is avoided. This also reduces the complexity
of the program code on the host. E.g., it can be argued that
signal manipulating operations , such as Celsius to kelvin
conversion, are concerns for the sensor, and not for the mas-
ter node.

2.2 Network Management
Each device in the network must manage its own view on
the network, which is a snapshot of the network at any
point in time. We now discuss four abstractions related to
network management: discovery, device description, leasing,
and designation.

2.2.1 Discovery
The first layer of abstraction is the network discovery ab-
straction. Both master and slave devices in a Potato system
continuously listen on the network for new devices. If a de-
vice boots, the Potato middleware will automatically notify
all its peers in the network of its presence. In doing so, all
devices that are in reach are aware of each other on the
network level.
At this point in the architecture the only knowledge a

device has about its peers is their unique location in the
network (e.g., IP address).

22

First-Class Reactive Programs for CPS REBLS’17, October 23, 2017, Vancouver, Canada

2.2.2 Device Description File
The second layer of abstraction is formed by Device Descrip-
tion Files (DDF). Each device that wants to participate in
a Potato application needs to be identified to its peers by
means of a DDF. A DDF contains all the relevant information
for the to set up communication with the device, and also
contains the set of instructions the device understands.

As soon as the discovery layer has notified the DDF layer
of a new reachable device, the DDF layer will contact the
DDF layer on the remote device. First the device sends its
own DDF to the discovered device, and awaits the DDF of the
discovered device to be sent back. TheDDF service thenmaps
the the DDF files to their corresponding remote identifier
(e.g., IP).

Listing 1. Device Description for a Lamp

{

"uuid": "8c2117b0 -51cd -11e7-bcdb -67

c26160338f",

"name": "Lamp 123",

"location": "office",

"control": "WIFI",

"type": {

"name": "lamp",

"capabilities": [

{"switch": {"ops": ["on", "off"]}

],

"signals": [temperature , humidity]

}

}

Listing 1 shows an example DDF. A DDF is composed out of
meta-data concerning the participating device. It contains
information such as a globally unique identifier, a human-
readable name, location, communication channel (e.g., Eth-
ernet or Bluetooth), a type, a list of capabilities, and a list of
signals available on the device.

As soon as a device is discovered, the middleware on each
device on the network creates a proxy data structure that
facilitates all the communication with the physical device.
This means that the programmer can communicate with
the data structure as if it were a plain old data structure.
Furthermore, this gives the framework more flexibility in
managing the actual connection between devices.

2.2.3 Leasing
The challenged connections in the systemswe have discussed
up to this point can not be easily managed. Connections can
no longer be managed individually, due to intentional des-
ignation (see Section 2.2.4) to catch failures. Additionally,
connections are challenged and thus fail periodically. We

argue that a short disconnect should not affect the semantics
of the system, nor should be of concern to the application
programmer. Leasing, as for example found in AmbientTalk
[8], is crucial building block of Potato. Leasing allows a pro-
grammer to gracefully handle intermittent connections. For
example, if a user walks around with a smartphone to read
out values from sensors in its vicinity, a temporary discon-
nect does not mean that the smartphone should no longer
await updates of the value of that sensor. Leasing maintains
a time-bound logical connection, even if the communication
link is temporarily broken.

Note that the leasing algorithm must be fine-tuned based
on the application in which it is deployed. Consider compar-
ing the value signal by a temperature sensor with the control
switch of an industrial robot. In the former case, no longer
receiving values from the sensor could either be a tempo-
rary disconnect, or it could be that there is an issue with the
temperature sensor. Either way, the impact on the workings
of the application is probably minimal. The control of an
industrial machine however, is very crucial. If we suddenly
lose connection we want the application to immediately be
able to take action accordingly.

Hence, we propose a leasing model without default lease
times, such that every connection must be configured to
have a specific timeout. In traditional AmbientTalk there is
a default leasing timeout. However, this means that if the
programmer omits one explicit lease timeout it can break
the entire application. We argue that default lease timeouts
are the worse of both options.

2.2.4 Designation
The final layer of abstraction on top of the network is the des-
ignation layer. The previous layer (i.e., DDF layer) managed
all the currently approachable devices. The designation layer
builds on top of this by managing designations of several
devices.
Intentional designation is defined as grouping together

parts of a network by means of a predicate without resorting
to individual enumeration of devices in that set. An example
of the intentional is show in Listing 2.

Listing 2. Intentional designation of all light bulbs.

with(e is Lightbulb and e.turned_on)

do

// code here

end

Listing 2 designates all the reachable devices in the network
that are of the type Lightbulb, and that are currently turned
on. While the code snippet seems trivial, the middleware
is doing a lot of background work. The execution of the
following code can be broken down in the following steps.

23

REBLS’17, October 23, 2017, Vancouver, Canada Christophe De Troyer, Jens Nicolay, and Wolfgang De Meuter

1. List all the devices currently present in the application
2. Filter out all the devices that are not a Lightbulb.
3. Filter out all lamps who’s signal says they are off.
4. Serialize the program on line 2 and send it to the de-

vices.
5. Perpetually monitor the network for new participants.

If a new participant joins, execute that code for the
new participants.

Note that the first predicate is known as soon as the device
has broadcast its DDF on the network; the type of a device
is static. The second predicate requires us to have runtime
information about the device. To be able to do so the DDF
layer will keep the network updated about its current DDF.
Most parts of the DDF remain static, such as the name, hu-
man readable name, unique id, etc. Runtime values such as
"location" in case of a GPS-equipped device are periodically
transmitted to the rest of the network.

3 Implementation
The implementation of Potato is a work in progress. Cur-
rently we have implemented a proof of concept in Elixir.
While the eventual goal is to deploy Potato on challenged
devices that require multiple protocols, we currently only
use Elixir and deploy Potato on Raspberry Pis.
We argue that Elixir is a good platform to build a proto-

type because the language runs on the BEAM VM. BEAM
is a VM geared towards actor or process based languages.
The process paradigm fits perfect on the different network
process we have discussed in Section 2. Each component of
the Potato mentioned before is implemented using a process,
and distribution is almost free in BEAM. Overall this helps
to reduce the development cost of our framework.
In this section we discuss how we implemented the con-

cepts of Section 2 in Elixir.

3.1 Reactivity
The code that is sent over to remote nodes are small scripts.
We call these scripts Potato Scripts. The basis of our Potato
Scripts is an Elixir library named "Reactivity". Reactivity al-
lows the programmer to write small reactive programs using
four primitives; source, register, lift, and apply. These
primitives suffice to implement common reactive programs.
Each device in the network is assumed to have a set of

built-in signals. For example, a temperature sensor has a
"temperature" signal etc. Based on these input signals the
programmer can create derived signals.

Consider the example in Listing 3.1.

source (: temperature)

|> liftapp(fn(t) ->
if t > 24 then:

:too_hot

else

:too_cold

end
end)

|> register (: hotcold)

source (: hotcold)

|> liftapp(fn(x) ->
if x == :too_cold then

puts "It's␣too␣hot!"

then

puts "It's␣too␣cold!"

end
end)

The first part of the example applies a function to the :source
signal and create a new signal that spits either a :too_hot
or a :too_cold symbol.
The second part of the program subscribes to this new

signal and prints out whether it is too hot or too cold.

3.2 Signals
The DDF of any device contains a list of its signals. These
are streams of data that update regularly. Examples are the
"temperature" signal on a temperature sensor, and the "lo-
cation" signal on a GPS tracker. Devices can send reactive
programs to slave devices that capture these signals and act
upon them.
Listing 3 depicts an example of such a reactive program.

Line 1 designates all the devices in the network that are
a Tracker and have a GPS signal. On all these devices we
deploy a reactive program that transmits its value to the host
device. Upon deployment on the node, the master keyword
in this program is replaced by a remote reference to the
master device that sent the program to the slave node.

Listing 3. Sending all GPS locations back to the master de-
vice.

with(e is Tracker and e has GPS) do
signal (:GPS)

|> liftapply (&(send(master , &1)))

Previously we hinted at creating new signals at runtime.
We enable this by using the register keyword. Consider
the example in Listing 4, in which the location signal is
translated into a publicly available signal.

Listing 4. Creating a new signal on all GPS devices.

with(e is Tracker and e has GPS) do
signal (:GPS)

|> liftapply(fn(_) -> :moving end)
|> register (: moving)

24

First-Class Reactive Programs for CPS REBLS’17, October 23, 2017, Vancouver, Canada

Any device that has a running designation which requires
a device to have a signal will be triggered as soon as the
updated DDF has propagated the network.

3.3 Network Discovery
Potato relies on UDP broadcasting to realize network discov-
ery. On top of this discovery primitive we use Erlang’s node
monitor system. This is a built-in functionality that enables
the monitoring of the liveness of devices such that we can
handle the events of new node that connecting and nodes
that disconnect.

The Network process thus receives nodeup and nodedown
signals, meaning the can only interact at this granularity.
However, Erlang enables tweaking the timeout for the node
connections, which in turn enables Potato to implement its
own timeouts. This means that the network discovery service
can delay the notification of disconnect to the rest of the
system by means of leasing.

3.4 Device Description Files
TheDDFs of the devices aremanaged by a separate Designator
actor. The DDF actor is notified by the Network actor in case
a new device has been discovered. The DDF actor will then
send a message at the Erlang level to the other IP. If the
device replies with its DDF the DDF is stored in the current
network and can be used for designations.
If the Network manager sends a disconnect message for

that particular node, the DDF is again removed.

3.5 Designation
The designation logic is handled by the Designator actor.
This actor listens to the client’s application for designations.
During evaluation of the clients program the Designator
is sent tuples containing a predicate and a program. The
Designator will deploy the program on all the remote nodes
for whose DDF the predicate succeeds.
This of course means that every new node that joins the

network has to be checked against all the pre-existing desig-
nations.

4 Related Work
Existing frameworks do not address the same set of problems
as Potato or have a different computational model.
Node-RED [1] and DDF [3] are a distributed data-flow

modeling web applications. Node-RED is aimed at extracting
data from an IoT system by means of deploying the Node-
RED software on all the nodes in the network, or configuring
anAPI for each node in the network. Our system has a similar
textual approach to programming the network, but has been
built with failure in mind from the start. While in Node-RED
failure is still not handled gracefully.
nesC [2] which runs on TinyOS [6] is a C-like program-

ming language that supports reactive distributed networked

applications. However, nesC is targeted solely low-power
highly constrained devices. Potato aims to incorporate these
devices into its network in the future, but its end-goal is to
have a clear master-slave architecture platform that incorpo-
rates both constrained devices as well as high-power devices
such as smartphones and mainframes. This makes the lan-
guage design aspect of potato different from nesC. Finally,
Potato is distributed reactive first, while nesC’s event-driven
model is aimed at wireless sensor networks.

Esperanto [4] is a framework that creates Object-Oriented-
style objects that act as a gateway to the device. This ap-
proach means that generic commonalities between devices
can be moved up in the OO-hierarchy. However, the architec-
ture of Esperanto differs significantly from Potato. Esperanto
is a form of tierless programming that offers a holistic view of
the entire application. Potato offers the same form of holistic
programming, but by means of intentional designation. This
means that distribution is by no means hidden from the pro-
grammer and failures are still apparent to the programmer
and can be handled more elegantly.

Tomlein et. al [7] have published a model to automatically
deploy software on a network of nodes. Each node in the
system has metadata which is embedded in the software that
needs to be deployed. During the deployment phase of the
software the system figures out, using semantic reasoning,
which software should be deployed on which device. These
rules are encoded using the Notation3 language. While the
designation of these devices happens in a declarative way,
the designation happens once, before the actual deployment.
Potato designates each device that joins at an undefined
time during the execution of the software. Furthermore, not
only static meta-data is considered by Potato, but also the
middleware signal values, which allows for a more real-time
designation.

5 Future Work
5.1 Finer-grained Designation
The second open research question is how we can deal with
more fine-grained designations, while also dealing with fail-
ure. For example, if we wish to designate only 5 of the nearby
light bulbs and deploy a blinking program on them. The prob-
lems with this arise due to the retroactive designation. Once
we have deployed a program on a remote node, there is, for
now, no way to cancel that. As soon as one of those light
bulbs fail, we should cancel the blinking on all 4 remaining
light bulbs.
On the other hand, consider the disconnection between

the master device and the failing light bulb to be temporary.
The light bulb is autonomous and will likely still be blinking.
Here, too, the possible solution is to use two-way leasing.

25

REBLS’17, October 23, 2017, Vancouver, Canada Christophe De Troyer, Jens Nicolay, and Wolfgang De Meuter

5.2 Leasing In Reactive Systems
The first open research question is how we can properly
integrate leasing within the functional reactive paradigm.
Again, consider the example of a master device applying a
local function on a remote signal on a slave device. After
a temporary disconnect the leasing paradigm might send a
batch of values from the slave device to the master device.
If we process all these signals we might create glitches in
the system. On the other hand, if we discard the values we
might miss important information. A possible solution to
this problem is using two-way leases. This means that slave
nodes monitor their masters and vice versa. At any point in
time, modulo lease time, every device is this is new aware of
failed communication links.
If the devices have noticed the communication link is

offline, the reactive program can safely be unscheduled until
the connection link is back. That way, neither the slave nor
themaster will produce new values on their signal and expect
them to be consumed by the remote node.

5.3 Declarative Signal Designation
The third open research question concerns the declarative
designation of signals. Consider the following application.

with(s is Sensor and s has Celsius) do
signal (: Celsius)

|> liftapply(fn(c) -> c + 237.15 end)
|> register (: kelvin)

Listing 5.3 creates a new signal on tdfdfhe slave nodes which
are Sensors. If the master device wants to compute the mdfd-
faximum of these values, the programmer would need to
subscribe to all these signals. We would like to use a declar-
ative approach to apply a function to all the signals in the
network, and compute it on the master node. A fold operadfd-
tion over this signal would be one possible way to approach
this. Listing 5.3 exemplifies a possible implementation.

fold_signal(signals (: temperature),

fn(t, acc) ->
max(t, acc)

end)

6 Conclusion
Potato is a framework that enables application prodfdfgram-
mers to express their intuitive ideas about interactive CPS
and IoT applications in a natural way. We believe that it
bends the train of thought of the programmer in the right
direction.

Failures in the distributed applications are mitigated using
two approaches. First, we introduce leasing to handle partial
failures in the distributed reactive programming. Second, we
deploy reactive programs on remote nodes as soon as there
is a connection available. This allows the devices to work
autonomously in the absence of a controlling master.

We have discussed a proof-of-concept implementation of
Potato in Elixir.

References
[1] Michael Blackstock and Rodger Lea. 2014. Toward a Distributed Data

Flow Platform for the Web of Things (Distributed Node-RED). In
Proceedings of the 5th International Workshop on Web of Things (WoT
’14). ACM, New York, NY, USA, 34–39. https://doi.org/10.1145/2684432.
2684439

[2] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer,
and David Culler. 2003. The nesC Language: A Holistic Approach to
Networked Embedded Systems. SIGPLAN Not. 38, 5 (May 2003), 1–11.
https://doi.org/10.1145/780822.781133

[3] Nam Ky Giang, Michael Blackstock, Rodger Lea, and Victor CM Leung.
2015. Developing iot applications in the fog: A distributed dataflow
approach. In Internet of Things (IOT), 2015 5th International Conference
on the. IEEE, 155–162.

[4] Gyeongmin Lee Seonyeong Heo Bongjun Kim and Jong Kim Hanjun
Kim. [n. d.]. Integrated IoT Programming with Selective Abstraction.
([n. d.]).

[5] Gerd Kortuem, Fahim Kawsar, Vasughi Sundramoorthy, and Daniel
Fitton. 2010. Smart objects as building blocks for the internet of things.
IEEE Internet Computing 14, 1 (2010), 44–51.

[6] Philip Levis, Sam Madden, Joseph Polastre, Robert Szewczyk, Kamin
Whitehouse, AlecWoo, David Gay, Jason Hill, Matt Welsh, Eric Brewer,
et al. 2005. TinyOS: An operating system for sensor networks. Ambient
intelligence 35 (2005), 115–148.

[7] Matú Tomlein and Kaj Grønbæk. 2016. Semantic model of variability
and capabilities of iot applications for embedded software ecosys-
tems. In Software Architecture (WICSA), 2016 13th Working IEEE/IFIP
Conference on. IEEE, 247–252.

[8] Tom Van Cutsem, Stijn Mostinckx, Elisa Gonzalez Boix, Jessie
Dedecker, and Wolfgang De Meuter. 2007. Ambienttalk: object-
oriented event-driven programming in mobile ad hoc networks. In
Chilean Society of Computer Science, 2007. SCCC’07. XXVI International
Conference of the. IEEE, 3–12.

26

https://doi.org/10.1145/2684432.2684439
https://doi.org/10.1145/2684432.2684439
https://doi.org/10.1145/780822.781133

	Abstract
	1 Introduction
	2 Potato
	2.1 Distributed Reactivity
	2.2 Network Management

	3 Implementation
	3.1 Reactivity
	3.2 Signals
	3.3 Network Discovery
	3.4 Device Description Files
	3.5 Designation

	4 Related Work
	5 Future Work
	5.1 Finer-grained Designation
	5.2 Leasing In Reactive Systems
	5.3 Declarative Signal Designation

	6 Conclusion
	References

