Abstractions for Distributed Event-Driven Applications

Position Paper

Christophe De Troyer,
Jens Nicolay, Wolfgang De Meuter

Vrije Universiteit Brussel
Pleinlaan 2
Etterbeek, Belgium 1040
cdetroye;jnicolay;wdemeuter@vub.ac.be

ABSTRACT

The Internet of Things (IoT) requires us to rethink the way dis-
tributed event-driven applications are programmed. IoT applica-
tions differ from traditional distributed applications on a number
of points. First, they are comprised of an order of magnitude more
devices that operate within a dynamic network. Second, failure
in large dynamic networks is no longer an exceptional state but a
given and thus needs to be part of the core semantics when pro-
gramming such networks. Third, the hardware in these networks
is not homogeneous so that a common software stack is impossible.
We believe that contemporary event-driven languages do not offer
appropriate abstractions to write IoT applications. We propose a
novel computational model for programming IoT applications by
identifying four key abstractions for designating network nodes and
handle failures that facilitate writing large-scale IoT applications.

CCS CONCEPTS

«Computer systems organization —Distributed architectures;
«Software and its engineering — Runtime environments;

KEYWORDS

Internet of Things, Distributed Programming, Runtimes

ACM Reference format:

Christophe De Troyer,

Jens Nicolay, Wolfgang De Meuter and Christophe Scholliers. 2017. Ab-
stractions for Distributed Event-Driven Applications. In Proceedings of Pro-
gramming 2017, Brussels, Belgium, April 2017 (PROGRAMMING’17), 2 pages.
DOI: 10.475/123 4

1 DISTRIBUTED EVENT-DRIVEN
APPLICATIONS

Internet of Things (IoT) is an umbrella term for several types of
distributed, event-driven applications. In this paper we restrict our-
selves to networked applications that have dynamic network topolo-
gies in which the nodes of the network can range from battery-
operated microcontrollers to mainframes.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

PROGRAMMING’17, Brussels, Belgium

© 2017 Copyright held by the owner/author(s). 123-4567-24-567/08/06...$15.00

DOI: 10.475/123_4

Christophe Scholliers
Universiteit Gent
Krijgslaan 281
Gent, Belgium
Christophe.Scholliers@UGent.be

We exemplify our focus by means of a simple application called
walking lights that runs on a user’s smartphone and communicates
with its environment by means of bluetooth. When a user walks
along a trail lined with tens of thousands of LED lights, the applica-
tion continuously scans for bluetooth devices in the vicinity of the
user’s smartphone. Nearby LED lights turn on, while more distant
LEDs turn off. Every LED is controlled by a battery-operated mi-
crocontroller equipped with GPS and bluetooth. This enables each
LED to be aware of its position and broadcast its location and state
of the LED light (on/off).

Besides walking lights, another example of an even-driven dis-
tributed application is a smart store in which shopping carts, smart-
phones, shelves, boxes, etc. are all equipped with microcontrollers.
Based on these and other example applications we discern three
key properties of distributed event-driven applications.

Dynamic Network Some nodes in the network are static (e.g.,
the LEDs microcontroller), while other nodes are nomadic (e.g., the
user’s smartphone).

Failures In distributed event-driven programs at the scale of walk-
ing lights or smart stores, failures can be caused by for example
dead batteries or interference on the radio communication. Failure
in these kinds of application therefore is a given instead of an ex-
ceptional state, and the language runtime should be able to deal
with these failures adequately.

Heterogenous Network In IoT networks devices are either sim-
ple and energy-constrained such as sensors, or they are compara-
tively powerful such as smartphones and mainframes. To facilitate
homogeneous communication between these devices, all devices
should communicate using a common interface.

Programming distributed event-driven applications therefore re-
quires the right abstractions to adequately deal with these proper-
ties.

2 RELATED WORK

Wireless sensor networks can be considered as a precursor to
IoT.Declarative SQL-like languages such as Cougar[1], TinyDB[3],
and SINA[4] offer a form of query language to gather data from
the sensor network. While the declarative approach is similar to
the idea we propose, the communication is unidirectional in the
sense that data always flows from the sensors to the sinks, while
the applications we envision require bidirectional communication.

AmbientTalk[2] is an event-driven programming model based
on a distributed actor language that allows the programmer to hook
into the network and discover nearby devices that run the same

PROGRAMMING’17, April 2017, Brussels, Belgium

application. For the applications we envision, AmbientTalk lacks
three features. First, it can only communicate with applications
running the same software stack. Second, retroactively applying
logic over a designated network is impossible. Third, failures are
hidden from the programmer, which means there is no explicit
behavior possible upon communication failure.

Contemporary runtimes such as the JVM and Erlang BEAM of-
fer no out-of-the-box possibilities to communicate with devices
through other protocols than Ethernet. To develop the applications
like walking lights it is required that the runtime supports multiple
communication protocols such as radio, bluetooth, WiFi, and Ether-
net. To the best of our knowledge no runtime exists that allows the
programmer to abstract away from the communication protocols
and program with a homogeneous first-class network.

3 ABSTRACTIONS FOR DISTRIBUTED
EVENT-DRIVEN APPLICATIONS

In this paper we argue for novel abstraction mechanisms to reduce
boilerplate code and programmer effort to implement large-scale
distributed event-driven applications. We identify four properties
of distributed event-driven applications, and for each property we
propose a novel language abstraction.

3.1 Intensional designation

Most programming languages designate endpoints in a network
in an extensional way by creating a list of endpoints and then
iterating over them to execute an expression. Instead we propose
intensional designation of network nodes, in which the programmer
creates a subnetwork based on a set of constraints such as “in
vicinity”. Constraints allow the programmer to create subnetworks
and address them as a whole, or execute logic for each individual
member. Consider the example program below.

def nearbyLEDs =
{e in Led | e.inRange(myLocation(),20)}

In this example all the elements in the current network that expose
the interface Led are selected. This interface publishes the runtime
property location, which is used to select only nearby elements.

3.2 Retroactive Designation

In many event-driven applications all events of interest, e.g., a de-
vice joining or leaving the network, must be explicitly handled in
order to keep the network in a consistent state with reality. How-
ever, in a massively distributed application this becomes tedious
and error-prone. We therefore introduce the notion of retroactive
designation. Consider the example below from walking lights that
turns on all LED lights in the vicinity of the user’s smartphone.
with led:{e in Led | e.inRange(myLocation(),20)}:

led.on()
Whenever a LED light enters the vicinity of the user’s smartphone,
the runtime will automatically re-evaluate the body of the designa-
tion so that the LED’s light is turned on.

3.3 Failure Handling

The IoT is often comprised of battery-powered devices that commu-
nicate over several different channels such as radio, bluetooth, and

C. De Troyer et al.

ethernet. This introduces several points of failure, and disconnects
and communication failures are no longer an exceptional state in
the program but a given. We therefore propose to incorporate a
programmer-managed failure threshold to allow the program to tol-
erate a certain percentage of failures from devices. Additionally, we
propose to introduce optional failure functionality to be specified
by the programmer. The example below shows how to address all
the LEDs in the vicinity of the user’s smartphone using a failure
threshold of 90%.
with led:{e in Led | e.inRange(myLocation(),20)} require
90\%:

led.on()
onfail do:

display "led failed: " led
In case less than 90% of the devices acknowledge the request to
turn on their LED, the expression is considered a failure and tra-
ditional exception handling can be applied. If at least 90% of the
devices acknowledges, the expression is considered a success. All
the devices that have not replied will be handled by the expression
following the onfail keyword.

3.4 Compensating Actions

Once an expression has been executed for a designated device, we
optionally want to compensate that action when the device leaves
our designation. We propose to use compensation actions to achieve
this. In walking lights, for example, we want to turn off the LED
light when the microcontroller is no longer in the vicinity.
with led:{e in Led | e.inRange(myLocation(),20)} require
90\%:

led.on()
onfail do:

display "led failed: " led
compensation:

led.off ()
The compensating action is specified using the compensation key-
word.

4 CONCLUSION

The Internet of Things requires us to rethink the way distributed
systems are programmed. We argued that contemporary event-
driven languages are not at the proper level of abstraction to write
IoT applications. In this paper we proposed four novel language
abstractions for designating network nodes and handle failures that
facilitate writing large-scale IoT applications.

REFERENCES

[1] Philippe Bonnet, Johannes Gehrke, and Praveen Seshadri. 2000. Querying the
physical world. IEEE personal Communications 7, 5 (2000), 10-15.

[2] Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx, Theo DfiHondt, and Wolf-
gang De Meuter. 2006. Ambient-oriented programming in ambienttalk. In Euro-
pean Conference on Object-Oriented Programming. Springer, 230-254.

[3] Sam Madden, Joe Hellerstein, and Wei Hong. 2003. TinyDB: In-network query
processing in tinyos. (2003).

[4] Chavalit Srisathapornphat, Chaiporn Jaikaeo, and Chien-Chung Shen. 2000. Sen-
sor information networking architecture. In Parallel Processing, 2000. Proceedings.
2000 International Workshops on. IEEE, 23-30.

	Abstract
	1 Distributed Event-driven Applications
	2 Related Work
	3 Abstractions for Distributed Event-driven Applications
	3.1 Intensional designation
	3.2 Retroactive Designation
	3.3 Failure Handling
	3.4 Compensating Actions

	4 Conclusion
	References

